
Extendable Bits of Digital On/Off Signal Controlling

Using Multi-Platform Clients via Web Services to

Single Arduino Output Port by Using SIPO Shift Registers

Kayun Chantarasathaporn
1
, Sudasawan Ngammongkolwong

2
, Songpol Nakarateruangsuk

3

and Chom Kimpan
4

1
 Faculty of Business Administration

Huachiew Chalermprakiet University

Samutprakarn, Thailand

dr.kayun@gmail.com
2, 3

 Faculty of Science and Technology

Southeast Bangkok College

Bangkok, Thailand

sudasawan@southeast.ac.th, songpol@southeast.ac.th
4
 Faculty of Engineering and Technology

Panyapiwat Institute of Management

Nonthaburi, Thailand

kkchom@kmitl.ac.th

บทคัดย่อ --- ช่วงหลายทศวรรษท่ีผ่านมา สัญญาณดิจิตอลได้
ถูกน า เข้ามาใช้ในการเ ฝ้า ดูและควบคุมในอุตสาหกรรม
หลากหลายระบบ ในอดีต กระบวนการจดัการเร่ืองน้ีถือไดว้่า
เ ป็ น ส่ิ ง ซั บ ซ้ อ น แ ต่ ห ลั ง จ า ก ท่ี มี ก า ร เ กิ ด ข้ึ น ข อ ง
ไมโครคอนโทรลเลอร์งานเหล่าน้ีจดัไดว้่าง่ายข้ึน และยิ่งง่ายใน
การศึกษาความรู้แขนงน้ีข้ึนไปอีกเม่ือมีการเกิดข้ึนของอาดูอิโน
ซ่ึงเป็นบอร์ดไมโครคอนโทรลเลอร์ส าเร็จรูปท่ีมีสถาปัตยกรรม
แบบเปิด
 กระนั้ นอาดูอิโนก็มีข้อจ ากัดท่ีจ านวนพอร์ตดิจิตอล
ส าหรับน าสัญญาณเข้าและออก โครงงานน้ีไดพ้ยายามแกไ้ข
ขอ้จ ากดัน้ีโดยการประยุกต์เทคโนโลยี SIPO ชิฟรีจิสเตอร์เข้า
กับอาดูอิโน เน่ืองจากนักพฒันาสามารถน าชิฟรีจิสเตอร์มา
เช่ือมกันได้แบบต่อเน่ือง ในทางทฤษฎีแล้วจ านวนบิตของ
สัญญาณดิจิตอลขาออกจึงไม่ถูกจ ากดั (ขยายไดไ้ม่จ ากดั)
 ในมุมมองของการพฒันาซอฟต์แวร์ โครงงานน้ีใช้
สถาปัตยกรรมซอฟตแ์วร์แบบ ๒ ชั้น โดยในส่วนตรรกะธุรกิจ
ซ่ึงใชเ้ป็นซอฟแวร์คัน่กลางไดเ้ลือกใชเ้ทคโนโลยีเว็บเซอร์วิส
เน่ืองจากเป็นมาตรฐานเปิดท่ีสามารถสนับสนุนซอฟต์แวร์ฝ่ัง
ผูใ้ชจ้ากเทคโนโลยแีละแพลตฟอร์มท่ีหลากหลาย เว็บเซอร์วิส
เซิร์ฟเวอร์ประกอบดว้ยเวบ็เมธอดส าหรับแลกเปล่ียนขอ้มูลกบั
โปรแกรมของอาดูอิโน
 ซอฟต์แวร์ฝ่ังผูใ้ช้ส าหรับควบคุมอุปกรณ์ผ่านเว็บ
เซอร์วิสในโครงงานน้ียกตัวอย่างไว้ ๒ แพลตฟอร์มคือ
ซอฟต์แวร์แบบวินโดวส์ฟอร์มและ ASP.NET เว็บฟอร์ม ซ่ึง
การน้ีท าให้ผูใ้ช้สามารถท างานกับระบบได้ทั้งจากเครือข่าย
ภายในและเครือข่ายระยะไกล
ค ำ ส ำ คัญ : สัญญำณดิ จิ ตอล , ควบคุม , ชิฟ รีจิ ส เตอ ร์ ,
ไมโครคอนโทรเลอร์, อำดูอิโน, เวบ็เซอร์วสิ, วนิโดวส์, เวบ็

Abstract --- Several decades ago, digital signal has been

embraced to the industry for monitoring and controlling

various systems. In the past, to handle these jobs, the

processes were rather complicated. However, after

having microcontroller, these tasks were easier. It has

been even much easier to learn this issue after the launch

of Arduino which is an instance open microcontroller

board.

However, Arduino has some limitation in the

number of digital input and output port. This project tries

to overcome this constraint by applying SIPO Shift

Register technology with Arduino. As developers can

cascade Shift Registers, theoretically, the numbers of bit

of digital output are not limited.

From the software viewpoint, this project is 2-

tier application. For business logic that works as a

middleware, Web Services is chosen because it is open

standard that can serve clients from various technologies

and platforms. Web Services server contains Web

Methods for exchanging data with Arduino program.

Client applications for controlling devices

through the Web Services are provided in 2 platforms,

Classic Windows Form Application and ASP.NET Web

Form Application. It means users can work from both

local and remote networks.

Keywords - digital signal; control; shift register;

microcontroller; arduino; web services; windows application;

web application

I. INTRODUCTION

Sending control signal is one of the famous task

in the industry. This study is going to let multi-platform

clients be able to send control signals which are multi-bit

Digital On/Off data via just one output port at

microcontroller. Using multi-platform client in this case

can be done conveniently because the project is designed

to separate between business logic and user interface.

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

5

The contents of this paper are as follows. First is

introduction. Second is overall picture. Third is brief

explanation about related knowledge used in the project.

Fourth is section of development processes and outputs.

Fifth is conclusion. The last, sixth, mentions about future

works.

To explain easier about this project, the author

would like to divide the whole system to 4 parts. First is

electronic device part that is considered pure hardware.

Second is microcontroller part which contains both

software and hardware. Third is Web Services part that

works as business logic software. Final part, fourth, is the

client software which works as user interface. Client can

be any kinds of platform from various technologies that

support Web Services, but this project chooses Windows

Form and Web Form Applications.

II. PROJECT OVERVIEW

A. Client Software

This project separates graphic user interface and

business logic apart from each other. The business logic

is located at Web Services. Sample client applications in

this case are in 2 platforms, Classic Windows Form

Application and ASP.NET Web Form Application. Client

gets data that are intended to send to control devices from

user via user interface screen.

B. Web Services for Sending Control Signals

Sending Digital On/Off control signals to the

target devices was extended from watching at the terminal

in front of the system to computer network. One of the

standard methodology for remote controlling and

monitoring over TCP/IP network is Web Services [1].

Remote procedure calls via Web Services has been well

accepted because they can use standard Web port (80 or

443) as the carrier. These two ports are usually

transparent for all firewall. The W3C defines a Web

service generally as “a software system designed to

support interoperable machine-to-machine interaction

over a network”.

Web Services, in this project, gets data from

Arduino and runs on Microsoft Internet Information

Server (IIS) Web Server.

C. Microcontroller

This project chooses Arduino[2] as the brain of

the system because it is low price with acceptable

performance and open source in both software and

hardware. Arduino provides both Software Development

Kit (SDK) and Integrated Development Environment

(IDE). By the way, many serious professional developers

may prefer popular IDE such as Microsoft Visual Studio

with Visual Micro's Arduino plug-in instead since it has

much more helping tools, such as, Intellisense (code

completion) and debugging.

D. Electronic Devices

One port per one bit is the easiest way for

sending Digital On/Off signal controlling. However, it is

hardly possible because the microcontroller board has

limited number of port. To overcome this limitation, there

are several techniques, such as, using multiplexers[3] or

Shift Registers[4]. This study chooses the Shift Registers

because they are simple and can support asynchronous

connection. Another reason is Shift Registers can be

cascaded which makes it easy to enhance the solution in

case that the users want to increase number of data bits.

III. RELATED KNOWLEDGE

To implement this project, there are at least 5

fields of knowledge needed to know, Classic Windows

Form Application, ASP.NET Web Form

Application, .NET Web Services, Arduino instance

microcontroller board and SIPO Shift Register[5]. Brief

explanation of them will be demonstrated as follows.

A. Classic Windows Form Application and ASP.NET Web

Form Application

Windows Form application has been popular for

a long time before an emerging of the Internet. It can run

standalone. There are many languages used for creating

Windows Form application, but this project uses C#

ASP.NET Web Form is one of the techniques for

creating Web Application provided by Microsoft. Others

are like Razor, MVC, however, this project chooses Web

Form because it is most concise.

ASP.NET Web Form application usually contains

3 kinds of major file extensions. ".aspx" is for graphic

user interface, ".aspx.cs" is for C# code and ".config" is

for storing configurations.

B. .NET Web Services

The W3C Web Services Architecture Working Group

defined a Web Services Architecture that it required

working with at least the following components

 An interface described in a machine-processable

format which was usually called as Web Services

Description Language (WSDL).

 The way defined for other systems to be able to

interact with the Web Services. How to do is a

manner prescribed by its description using SOAP

(Simple Object Access Protocol) messages.

Usually, Web Services work through the network by

using HTTP protocol with XML serialization along with

other Web-related standards. Brief working steps in Web

Services Architecture from Figure 1 are as follows

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

6

Figure 1 Web Services Components

(https://upload.wikimedia.org/wikipedia/commons/4/4a/
Webservices.png)

 Service Provider registers its services with Service

Broker UDDI and let UDDI advertise this information.

 Service Requester starts searching required service by

contacting UDDI to look for appropriated services.

UDDI provides WSDL of the appropriated service to the

Service Requester.

 After Service Requester gets appropriated WSDL, it

can contact Service Provider directly.

 From then, Service Requester and Service Provider

can exchange their data by using SOAP (Simple Object

Access Protocol) as a wrapper. SOAP is like an

envelope that stores real data inside. Data used in Web

Services Architecture are often in the format of XML

(eXtensible Markup Language).

.NET Web Services is Web Services framework

provided by Microsoft. It follows Web Services standard

requirements. However, with tools provided in Visual

Studio, creating Web Services is quite convenient. .NET

Web Services is created based on ASP.NET.

C. Arduino Microcontroller Board and SDK

Arduino is a microcontroller board designed with

standard I/O layout. One of the most popular Arduino

board is Arduino UNO (Figure 2). The prominent benefit

of setting standard layout for I/O pins is third party firms

can design various extension modules, called as

"Shield". Shield can be stacked, too. Most of the shields

use electrical power from main Arduino board. So, to

implement with shield, developers have to concern about

the total required power whether it is enough or not.

 Though Arduino SDK has already provided

built-in IDE, it is just a basic. Serious developers usually

use more advanced IDE with supplement features, such

as, IntelliSense (code completion), debugger and version

control. This project uses original Arduino SDK, free

version of Arduino development plug-in from Visual

Micro and Microsoft Visual Studio 2013 Community

Edition.

D. SIPO Shift Registers

Shift registers are a type of sequential logic

circuit, mainly for storage of digital data. They are

created by set of flip-flops. Output signal of one flip-flop

will be input signal of another flip-flop. Most of the Shift

Registers do not have characteristic internal sequence of

states. Clock is used for controlling the whole set of flip-

flops. All flip-flops are set and reset simultaneously.

There are 4 kinds of Shift Register. Serial In-

Serial Out Shift Registers (SISO), Serial In-Parallel Out

Shift Registers (SIPO), Parallel In-Serial Out Shift

Registers (PISO) and Parallel In-Parallel Out Shift

Registers (PIPO)

Serial In Parallel Out Shift Register can be used

to get serial data input and distribute them as parallel data

output. Sample circuit of SIPO Shift Register is shown in

Figure 3. SIPO Shift Register gets serial input data from

pin D and feeds data out at pin Q of FF0, FF1, FF2 and

FF3 flip-flops respectively. Data from pin Q of FF0 to

FF3 are shown as Q0 to Q3. Reading in and feeding out

are controlled by clock (CLK) which connects to clock

pin on FF0 to FF3. Data from Q0 to Q3 will be fed out at

the same time which is considered as parallel data out.
This project uses SIPO to get serial control data

as the input and feed out as parallel data. The parallel

Digital On/Off control data will be sent to the target

devices.

IV. DEVELOPMENT AND OUTPUT

Starting point of this system is at the client, either

Classic Windows Form or ASP.NET Web Form

Applications as shown in Figure 4. Client, GUI part,

sends Digital On/Off control data to .NET Web Services

(Web Methods) that locates in IIS Web Server on

PC. .NET Web Services, which works as business logic

part, feeds the data to Arduino instance microcontroller

board. Arduino connects to the PC via USB port.

Arduino then sends serial data to CD4094BE SIPO Shift

Registers. These Shift Registers convert the serial data to

parallel one and send to destination devices. In this

project, the destination devices are LED's

TABLE 1 PIN MAP BETWEEN IC AND ARDUINO BOARD

Pin# on Most

Significant IC

Pin# on Least

Significant IC

Pin# on Arduino

Board

1 1 10

2 9

3 3 11

 2 12

A. Hardware Portion

This prototype circuit uses 16 LED's as

destination devices for getting Digital On/Off control

signals as shown in Figure 5. Data are sent from Web

Services on PC to Arduino via USB port at position 1 in

the figure. Position 2 is Pin 10 of Arduino works as

strobe for controlling CD4094BE Shift Register about

what to do between reading data in or writing data out.

Position 3 is Arduino's Pin 12 that work as data tube

between Arduino and Shift Register. Two CD4094BE

SIPO Shift Registers that connect to Digital On/Off

destination devices (in this case, they are LED's) are

Figure 2 Arduino UNO that uses ATmega328 as a CPU
(https://www.ntu.edu.sg/home/ehchua/programming/arduino/images/ArduinoU

no.png)

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

7

shown at Position 4 in Figure 5 while 16 bit LED's are at Position 5.

Figure 4 Overview of Controlling System

Figure 5 Sending output control signals (Shift Out)

by CD4094BE from Arduino

Figure 6 Check "Timer Enable" to send summarized data automatically every second.

Figure 7 ASP.NET Web Form Client for sending 16 bit Digital On/Off control data

Figure 3 4-bit SIPO Shift Registers.

(http://www.ee.usyd.edu.au/tutorials/digital_tutorial/part2/pics/regist03.jpg)

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

8

Figure 8 Schematic diagram of the project

In Figure 5, as there are 2 SIPO Shift Registers,

one must be assigned as the most significant IC and

another will be the least significant one. The above

breadboard is the least significant IC while the bottom

breadboard is the most significant IC. Both IC's have to

be wired together and link to Arduino board as stated pins

in Table 1. Schematic diagram of the project is shown in

Figure 8.

B. Software Portion

 There are 3 parts in software portions. (Source

code of all software portions can be downloaded from

http://goo.gl/gsTPZr)

1) Client Software

 This project contains 2 sample kinds of client,

Classic Windows Form Application and ASP.NET Web

Form Application. Both of them refer to Web Methods

in .NET Web Services in 2).
a) Classic Windows Form Application

 User Interface of this kind of client is as Figure

6. Classic Windows Form Application can run as

standalone. Steps of working inside this client are as

follows.

(a) Get COM port number that is used for serial

communication between PC and Arduino (check

from “Device Manager” in “Control Panel” of

Microsoft Windows).

(b) Start the program. The screen will be like Figure

6. Fill COM port number that is gotten from (a).

Each of sixteen CheckBoxes represent the

corresponding 16 bit on/off digital control

signals.

(c) After checking the CheckBoxes, manually click

the "Summary" button. The collection of on/off

data from CheckBoxes will be summarized to be

binary string and sent to "SIPOService" Web

Services that locates in IIS Web Server.

(d) "SerialPortOpen" Web Method will be called.

The parameter for this Web Method is port

number. It will open the specified serial port

(USB) to be ready for using.

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

9

(e) The next Web Method that is called is

"SummarizeDigitsAndWrite2Serial". This Web

Method needs binary string data, gotten from

client, as a parameter. This Web Method will

write data to serial port and show Message Box

stating the data written in both hexadecimal and

binary format. This data will be used by

Arduino.

(f) After finish sending, "SerialPortClose" Web

Method will be called.

(g) Steps from (b) to (f) are manual working. There

is another way that will submit summarized data

repeatedly in a period of time. User just check

the "Timer Enable" CheckBox as shown in

Figure 4.4. If doing like this, the step from (b) to

(d) and (f) will be done every second. (Step (e)

will be skipped as there will be too many

MessageBox).

b) ASP.NET Web Form Application

 Working logic of the Web Services client in the

format of ASP.NET Web Form Application are rather

similar to the Classic Windows Form Web Services client.

By the way, there is some difference in background

technique behind “Timer” control in both platforms.

“Timer” in ASP.NET Web Form is not similar to other

web controls like what is in Windows Form. Developer

needs to use special technique which is called “AJAX”

(Asynchronous Javascript And XML). The prominent

point of AJAX is it supports asynchronous processing.

Another issue user needs to keep in mind is any Web

Applications require browser as its running environment.

In this project, ASP.NET Web Form Application uses IIS,

too.

 Steps of working for ASP.NET Web Form

Application are almost the same as (a) to (f) of a) except

at (e) in Web Application, the submitted data will not

show in Message Box. It will be in label format as

pointed by the arrow cursor in Figure 7.

 Automatic sending changed control data to

Arduino every second can be done in the same way as in

Classic Windows Form application. User just check the

"Timer" CheckBox.

Table 2 shows sample of control data that are

sent from client program (Windows or Web Application)

to destination devices (LED's). Table 2 provides just 3

samples. In fact, because there are 16 bit Digital On/Off

control signal choices, there can be 65,536 different

results (2 raised to the 16th power combinations)

2) Web Service Software

 .NET Web Services part, from Figure 9, contain

4 Web Methods as follows.

a) Web Method for opening specified serial port
[WebMethod(Description = "Open Serial Port

COM#")]

public bool SerialPortOpen(string

strPortNumber)

This Web Method requires input as a string (serial

port number) and returns output as a bool stating

whether port opening succeeded or not.

b) Web Method for closing specified serial port
[WebMethod(Description = "Close Serial

Port")]

public bool SerialPortClose()

This Web Method returns output as a bool stating

whether port closing succeeded or not.

c) Web Method for checking whether the specified port

is available or not
[WebMethod(Description="Check whether port

is Avalable")]

public bool IsPortAvailable(string

strPortNumber)

This Web Method requires input as a string (serial

port number) and returns output as a bool stating

whether status of the specified port is available.

d) Web Method for getting data from series of

CheckBox and send to serial port.
[WebMethod(Description="Please provide 16

bit binary and write to serial port")]

public string

SummarizeDigitsAndWrite2Serial(string

strBinStatus)

This Web Method needs binary string data as a

parameter. The binary string data will be converted

to hexadecimal and sent to serial port. The

hexadecimal data that is written to serial port will be

returned from the Web Method, too.

 These Web Methods will be used by client

applications. Testing page of the Web Methods in .NET

Web Services that is provided by .NET framework is

shown in Figure 9. In Figure 9, user wants to test

"SummarizeDigitsAndWrite2Serial" Web Method that

TABLE 2 SAMPLE RESULT OF DATA SENT FROM SIGNAL SOURCES TO DESTINATIONS ON CLIENT'S SCREEN

Sam

ple

Client Program (Windows

or Web Application)
Web Server

Microcon

troller

Parts

Electronic Parts

Check

Box

#15-0

(c=

checked,

u=un

checked)

Binary

String

Hexa

decimal

String

Hexa

decimal

String

(XML)

Binary

String

(XML)

Ardu

ino

SIPO Shift Registers

Destination

Devices (n=on,

f=off)

MSB LSB
LED

#15-8

LED

#7-0

1
ccccuuuu
cucucucc

11110000
10101011

F0AB F0AB
11110000
10101011

F0AB 11110000 10101011
nnnn
ffff

nfnf
nfnn

2
uuucuucu
cuucccuu

00010010
10011100

129C 129C
00010010
10011100

129C 00010010 10011100
fffn
ffnf

nffn
nnff

3
cuuuuuuc
uuuccuuu

10000001
00011000

8118 8118
10000001
00011000

8118 10000001 00011000
nfff
fffn

fffn
nfff

===> Data Direction ===>

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

10

Figure 9 List of Web Methods of SIPOService thouse are shown in test page

requires binary string as its parameter. After clicking,

Figure 10 will show up. After filling binary string and

click "Invoke" button, the result page will show up as

Figure 11. Sample result of the Web Method in Web

Services is shown in Figure 11. It will be in XML format.

This XML data will be consumed by the client of Web

Services

C# code of the SIPOService Web Services is

shown in Figure 12. This Web Services codes are located

in IIS Web Server.

3) Arduino Software

 Codes of Arduino are in Figure 13. Processes of

Arduino Layer Software when getting Digital On/Off

control data from Web Services via its serial port are as

follows

(1) Getting Serial Data (in hexadecimal format) from

Web Services

(2) Transform Serial Data to be Parallel Data

(3) Arrange High and Low Bytes to send Digital On/Off

control signal to appropriated destination (LED's).

V. CONCLUSION

 The project can do as the objective which is

sending multi-bit Digital On/Off control signals from

multi-platform clients via standard Web Services through

only one input port of Arduino to multiple destination

devices. This project separates task to 3 parts, user inter

face part (client software), business logic part (Web

Services) and microcontroller with device part (Arduino).

Sample multi-platform clients in this project are Classic

Windows Form and ASP.NET Web Form applications.

Steps of working are as follows. Any platform clients,

that support Web Services, send multi-bit Digital On/Off

control data to Web Services. Web Services sends that

serial data to Arduino. (The reason that data should be in

serial format is it will consume just one output port at

Arduino board.) Arduino with the cooperation of SIPO

Shift Registers (CD4094BE) transforms serial data to

parallel data and distributes to appropriated digital

devices. By using SIPO Shift Registers, customers can

cascade more modules which can extend amount of

control data bit and destination devices as need.

VI. FUTURE WORK

 There are many issues that can do further from

this project. First, creating clients in other platforms, such

as, java, android and iOS. Second, wrapping data

communicated in the whole project with standard

industrial bus, such as Modbus TCP.

REFERENCES

[1] H. Haas and A. Brown, “Web Services Glossary.

W3C,” W3C Working Group Note, 2004.

[Online]. Available: http://www.w3.org/TR/ws-

Figure 10 Web Method will provide the parameter input page if it needs parameter value.

Figure 11 Sample hexadecimal string data gotten from “SummarizeDigitsAndWrite2Serial” Web Method.

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

11

gloss/. [Accessed: 09-Sep-2015].

[2] “Getting Started with Arduino,” 2016. [Online].

Available:

https://www.arduino.cc/en/Guide/HomePage.

[Accessed: 11-Apr-2016].

[3] “Multiplexer and Demultiplexer,” 2013. [Online].

Available:

http://www.electronicshub.org/multiplexer-and-

demultiplexer/. [Accessed: 08-Sep-2015].

[4] “Shift Registers,” 2014. [Online]. Available:

http://www.ee.usyd.edu.au/tutorials/digital_tutoria

l/part2/register01.html. [Accessed: 08-Sep-2015].

[5] P. Lau, “Serial In-Parallel Out Shift Register,”

School of Electrical & Information Engineering,

University of Sydney, 2010. [Online]. Available:

https://www.ee.usyd.edu.au/tutorials/digital_tutori

al/part2/register03.html. [Accessed: 11-Apr-

2016].

APPENDIX

 Essential codes of the project come from parts of

Web Services and Arduino are listed in Figure 12 and 13

respectively.

using System;
using System.Collections.Generic;
using System.IO.Ports;
using System.Web;
using System.Web.Services;
namespace LearnShiftOutClientWS01Prj {
 [WebService(Namespace = "http://SIPO.gmis.co.th/")]
 [WebServiceBinding(ConformsTo =
WsiProfiles.BasicProfile1_1)]
 [System.ComponentModel.ToolboxItem(false)]
 [System.Web.Script.Services.ScriptService]
 public class SIPOService :
System.Web.Services.WebService {
 static SerialPort srpMain = null;
 static bool blnIsSerialPortOpen = false;
 public static SerialPort SrpMain {
 get { return srpMain; }
 set { srpMain = value; }
 }
 public static string StrBinStatus { get; set; }
 public static string StrHexStatus { get; set; }
 public static string StrCOMPort { get; set; }
 public SIPOService() {}
 public string ConvertBinStringToHexString(string
strBinString) {
 int i = Convert.ToInt32(strBinString, 2);
 string strHex = i.ToString("X4");
 return strHex;
 }
 [WebMethod(Description="Please provide 16 bit binary and
write to serial port")]
 public string SummarizeDigitsAndWrite2Serial(string
strBinStatus) {
 string strHexStatus = "";
 strHexStatus =
ConvertBinStringToHexString(strBinStatus);
 if (!srpMain.IsOpen) { srpMain.Open(); }
 srpMain.WriteLine(strHexStatus);
 srpMain.Close();
 StrBinStatus = strBinStatus;
 StrHexStatus = strHexStatus;
 return strHexStatus;
 }

 [WebMethod(Description="Check whether port is
Avalable")]
 public bool IsPortAvailable(string strPortNumber) {
 if (SrpMain.PortName == "COM" + strPortNumber) {
 return blnIsSerialPortOpen;
 } else {
 return false;
 }
 }
 [WebMethod(Description = "Open Serial Port COM#")]
 public bool SerialPortOpen(string strPortNumber) {
 try {
 srpMain = new SerialPort();
 SrpMain = srpMain;
 SrpMain.PortName = "COM" + strPortNumber;
 SrpMain.BaudRate = 9600;
 SrpMain.Parity = Parity.None;
 SrpMain.DataBits = 8;
 SrpMain.StopBits = StopBits.One;
 SrpMain.DtrEnable = true;
 SrpMain.Open();
 StrCOMPort = SrpMain.PortName;
 if (SrpMain.IsOpen == true)
 blnIsSerialPortOpen = true;
 return blnIsSerialPortOpen;
 } catch {
 srpMain.Dispose();
 srpMain.Close();
 blnIsSerialPortOpen = false;
 return blnIsSerialPortOpen;
 }
 }
 [WebMethod(Description = "Close Serial Port")]
 public bool SerialPortClose() {
 bool blnIsSerialPortClose = false;
 SrpMain.Close();
 if (SrpMain.IsOpen != true) {
 blnIsSerialPortClose = true;
 }
 return blnIsSerialPortClose;
 }
 }
}

Figure 12 Web Services Code (SIPOService) (LearnShiftOutClientWS01.asmx.cs)

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

12

int intStobePin, intClockPin, intDataPin;
int intToggle = -1;
int intInputMaxDigit = 16; // 16 bit
int UIntDataOut = 0;
char chrBuffer[4];
void ShiftOut(int intDataPin, int inClockPin, u16 bytDataOut, int
intMaxDigit) {
 int intPinState = 0;
 for (int i = intMaxDigit; i >= 0; i--) {
 digitalWrite(intClockPin, 0);
 if (bytDataOut & (1 << i)) {
 intPinState = 1;
 }
 else {
 intPinState = 0;
 }
 digitalWrite(intDataPin, intPinState);
 digitalWrite(intClockPin, 1);
 digitalWrite(intDataPin, 0);
 }
 digitalWrite(intClockPin, 0);
}
void setup() {
 intStobePin = 10;

 intClockPin = 11;
 intDataPin = 12;
 pinMode(intStobePin, OUTPUT);
 pinMode(intClockPin, OUTPUT);
 pinMode(intDataPin, OUTPUT);
}
void loop() {
 u16 UIntDataGet = 0;
 int intT = Serial.available();
 if (intT > 0) {
 Serial.readBytesUntil('\n', chrBuffer,
Serial.available());
 UIntDataGet = strtol(chrBuffer, NULL, 16);
 Serial.print(UIntDataGet, BIN);
 Serial.print(" - ");
 Serial.println(UIntDataGet, HEX);
 digitalWrite(intStobePin, LOW);
 ShiftOut(intDataPin, intClockPin,
UIntDataGet, intInputMaxDigit);
 digitalWrite(intStobePin, HIGH);
 delay(500);
 }
}

Figure 13 Arduino Code (LearnShiftOut03Prj.ino)

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

13

	Binder1.pdf
	114-142-1-SM.pdf
	116-146-1-SM.pdf
	98-114-1-SM.pdf
	Kobthong_Eng.pdf

