International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

Extendable Bits of Digital On/Off Signal Controlling
Using Multi-Platform Clients via Web Services to
Single Arduino Output Port by Using SIPO Shift Registers

Kayun Chantarasathaporn', Sudasawan Ngammongkolwong?®, Songpol Nakarateruangsuk’
and Chom Kimpan*

! Faculty of Business Administration

Huachiew Chalermprakiet University

Samutprakarn, Thailand

dr.kayun@gmail.com

23F aculty of Science and Technology
Southeast Bangkok College
Bangkok, Thailand
sudasawan@southeast.ac.th, songpol@southeast.ac.th
* Faculty of Engineering and Technology

Panyapiwat Institute of Management
Nonthaburi, Thailand
kkchom@kmitl.ac.th

unfage — FravatoneIsuimuL dygiuatnoala
gniudiw1dlunisidiquazaluqulugaaivnssy

1 4
Wa1na1szuy lueda nizulumsiansEesiine lai
<3| 2 o ' @ A A a 3
iudesdudon uandesviniinisinaliuvea

s R T A
luTasaouInsameiamumaiiivalandety nazasiielu
=2 Y 23 2 A A a X a

msannnuiuvueiiu lfdndelinsinaiuveseigd Tu
& g s) Aa
FutluveialulasneuInsamesduiogiUnianidanssy
uuuila

s
@ a

==} o w 'o Jd Aaa
nsziue1gd luniidesinanduiunesnninea
Y
Faanaudmazoon Tasaauil ldwereund b

oo

U ERINR
2
1

SRe Do

pi1naillaomstszgndmaTulad SIPO FWiiaaeiiin

€

a v o o A a 4
Ufﬂﬂﬂiu iesnndnwannansoihsfEiamesun
Ay

A
¥O

o—

winldunuaeiiios Tuntamguiudrsiuiuiaves
dynaataeavioands lugniina (vene'ld lisiia)
o P 2
Tuyuuesvosmsiauizodanas Tassauily
s o H ' a
amlaenssuaorduinuy o 51 Tasludiuassnegsne
= v P ¥ A] a g sa
FalHilusonursaunarsldidenlsmaluladduwesda
A I A P o o o o
esnmunasprudlanamnsaaivayuseanisd
] ~ J A 3 Ja
AlynnmaluTaduazunaaeSuiivainnale Nuwesia
Ad P y g o o A Y o
Fivnesiszneudrsiuwseadmivuanasudeyany
Tilsunsuveteigd v
4 & o o o o] 5
goausdadldd miuniuguensainiuiy
sa 2 o ' v s A
wosialulasanuilendli08191% o unannesude
s o a s o 3 s =
goausuuvIulardnesuuay ASPNET Aurosy @9
2o q vy o o v ¥ A
s lidldansamauiuszuuldnnnniedie
melunazinseiesze: Ina
o o % %3 aa A a Jd
Md1AY: dygivadnoea, Aivaw, ¥W33anes,
d a I3 da a Jd
lulasnoulnsaes, 019aly, Suwes3a, Iulaad, 13y

Abstract --- Several decades ago, digital signal has been
embraced to the industry for monitoring and controlling
various systems. In the past, to handle these jobs, the
processes were rather complicated. However, after
having microcontroller, these tasks were easier. It has
been even much easier to learn this issue after the launch
of Arduino which is an instance open microcontroller
board.

However, Arduino has some limitation in the
number of digital input and output port. This project tries
to overcome this constraint by applying SIPO Shift
Register technology with Arduino. As developers can
cascade Shift Registers, theoretically, the numbers of bit
of digital output are not limited.

From the software viewpoint, this project is 2-
tier application. For business logic that works as a
middleware, Web Services is chosen because it is open
standard that can serve clients from various technologies
and platforms. Web Services server contains Web
Methods for exchanging data with Arduino program.

Client applications for controlling devices
through the Web Services are provided in 2 platforms,
Classic Windows Form Application and ASPNET Web
Form Application. It means users can work from both
local and remote networks.

Keywords - digital signal; control; shift register;
microcontroller; arduino; web services; windows application;
web application

I. INTRODUCTION

Sending control signal is one of the famous task
in the industry. This study is going to let multi-platform
clients be able to send control signals which are multi-bit
Digital On/Off data via just one output port at
microcontroller. Using multi-platform client in this case
can be done conveniently because the project is designed
to separate between business logic and user interface.

The contents of this paper are as follows. First is
introduction. Second is overall picture. Third is brief
explanation about related knowledge used in the project.
Fourth is section of development processes and outputs.
Fifth is conclusion. The last, sixth, mentions about future
works.

To explain easier about this project, the author
would like to divide the whole system to 4 parts. First is
electronic device part that is considered pure hardware.
Second is microcontroller part which contains both
software and hardware. Third is Web Services part that
works as business logic software. Final part, fourth, is the
client software which works as user interface. Client can
be any kinds of platform from various technologies that
support Web Services, but this project chooses Windows
Form and Web Form Applications.

1. PROJECT OVERVIEW

A. Client Software

This project separates graphic user interface and
business logic apart from each other. The business logic
is located at Web Services. Sample client applications in
this case are in 2 platforms, Classic Windows Form
Application and ASP.NET Web Form Application. Client
gets data that are intended to send to control devices from
user via user interface screen.

B. Web Services for Sending Control Signals

Sending Digital On/Off control signals to the
target devices was extended from watching at the terminal
in front of the system to computer network. One of the
standard methodology for remote controlling and
monitoring over TCP/IP network is Web Services [1].
Remote procedure calls via Web Services has been well
accepted because they can use standard Web port (80 or
443) as the carrier. These two ports are usually
transparent for all firewall. The W3C defines a Web
service generally as “a software system designed to
support interoperable machine-to-machine interaction
over a network”.

Web Services, in this project, gets data from
Arduino and runs on Microsoft Internet Information
Server (IIS) Web Server.

C. Microcontroller

This project chooses Arduino[2] as the brain of
the system because it is low price with acceptable
performance and open source in both software and
hardware. Arduino provides both Software Development
Kit (SDK) and Integrated Development Environment
(IDE). By the way, many serious professional developers
may prefer popular IDE such as Microsoft Visual Studio
with Visual Micro's Arduino plug-in instead since it has
much more helping tools, such as, Intellisense (code
completion) and debugging.

D. Electronic Devices

One port per one bit is the easiest way for
sending Digital On/Off signal controlling. However, it is
hardly possible because the microcontroller board has

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

limited number of port. To overcome this limitation, there
are several techniques, such as, using multiplexers[3] or
Shift Registers[4]. This study chooses the Shift Registers
because they are simple and can support asynchronous
connection. Another reason is Shift Registers can be
cascaded which makes it easy to enhance the solution in
case that the users want to increase number of data bits.

I1l. RELATED KNOWLEDGE

To implement this project, there are at least 5
fields of knowledge needed to know, Classic Windows
Form Application, ASPNET Web Form
Application, .NET Web Services, Arduino instance
microcontroller board and SIPO Shift Register[5]. Brief
explanation of them will be demonstrated as follows.

A. Classic Windows Form Application and ASP.NET Web
Form Application

Windows Form application has been popular for
a long time before an emerging of the Internet. It can run
standalone. There are many languages used for creating
Windows Form application, but this project uses C#

ASP.NET Web Form is one of the techniques for
creating Web Application provided by Microsoft. Others
are like Razor, MVC, however, this project chooses Web
Form because it is most concise.

ASP.NET Web Form application usually contains
3 kinds of major file extensions. ".aspx" is for graphic
user interface, ".aspx.cs" is for C# code and ".config" is
for storing configurations.

B. .NET Web Services

The W3C Web Services Architecture Working Group
defined a Web Services Architecture that it required
working with at least the following components

e An interface described in a machine-processable
format which was usually called as Web Services
Description Language (WSDL).

e The way defined for other systems to be able to
interact with the Web Services. How to do is a
manner prescribed by its description using SOAP
(Simple Object Access Protocol) messages.

Usually, Web Services work through the network by
using HTTP protocol with XML serialization along with
other Web-related standards. Brief working steps in Web
Services Architecture from Figure 1 are as follows

Service
Broker
,a upDI
F
WSDL, wsDL,
| soap | m
| ’»
Service Service
Requester Provider

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

Figure 1 Web Services Components
(https://upload.wikimedia.org/wikipedia/commons/4/4a/
Webservices.png)

e Service Provider registers its services with Service

Broker UDDI and let UDDI advertise this information.

e Service Requester starts searching required service by

contacting UDDI to look for appropriated services.

UDDI provides WSDL of the appropriated service to the

Service Requester.

o After Service Requester gets appropriated WSDL, it

can contact Service Provider directly.

e From then, Service Requester and Service Provider

can exchange their data by using SOAP (Simple Object

Access Protocol) as a wrapper. SOAP is like an

envelope that stores real data inside. Data used in Web

Services Architecture are often in the format of XML

(eXtensible Markup Language).

NET Web Services is Web Services framework
provided by Microsoft. It follows Web Services standard
requirements. However, with tools provided in Visual
Studio, creating Web Services is quite convenient. .NET
Web Services is created based on ASP.NET.

C. Arduino Microcontroller Board and SDK

Arduino is a microcontroller board designed with
standard I/0O layout. One of the most popular Arduino
board is Arduino UNO (Figure 2). The prominent benefit
of setting standard layout for I/O pins is third party firms
can design various extension modules, called as
"Shield". Shield can be stacked, too. Most of the shields
use electrical power from main Arduino board. So, to
implement with shield, developers have to concern about
the total required power whether it is enough or not.

Though Arduino SDK has already provided
built-in IDE, it is just a basic. Serious developers usually
use more advanced IDE with supplement features, such
as, IntelliSense (code completion), debugger and version
control. This project uses original Arduino SDK, free
version of Arduino development plug-in from Visual
Micro and Microsoft Visual Studio 2013 Community
Edition.

D. SIPO Shift Registers

Shift registers are a type of sequential logic
circuit, mainly for storage of digital data. They are
created by set of flip-flops. Output signal of one flip-flop
will be input signal of another flip-flop. Most of the Shift
Registers do not have characteristic internal sequence of
states. Clock is used for controlling the whole set of flip-
flops. All flip-flops are set and reset simultaneously.

There are 4 kinds of Shift Register. Serial In-
Serial Out Shift Registers (SISO), Serial In-Parallel Out
Shift Registers (SIPO), Parallel In-Serial Out Shift
Registers (PISO) and Parallel In-Parallel Out Shift
Registers (PIPO)

Serial In Parallel Out Shift Register can be used
to get serial data input and distribute them as parallel data
output. Sample circuit of SIPO Shift Register is shown in
Figure 3. SIPO Shift Register gets serial input data from
pin D and feeds data out at pin Q of FFO, FF1, FF2 and
FF3 flip-flops respectively. Data from pin Q of FFO to
FF3 are shown as QO to Q3. Reading in and feeding out

are controlled by clock (CLK) which connects to clock
pin on FFO to FF3. Data from QO to Q3 will be fed out at
the same time which is considered as parallel data out.

This project uses SIPO to get serial control data
as the input and feed out as parallel data. The parallel
Digital On/Off control data will be sent to the target
devices.

LED — Load & Pin 13

Reset Bytton

14x Digital IN/OUT
(6x PWM™ OUT)
(5V, 40mA)

LED - Power ON

h| (Green or Orange)
UsB

Microcontroller
(8-bit, 16 MHz,
32 KB Flash,

1 KB EEPROM,
2 KB SRAM)

DC Power Jack
(AC-to-DC adapter)
(7-12v)

Power OUT
(5V, 3.3v)

Power IN 6x Analog IN
(9V battery) (0-5V 10-bit ADC)

Figure 2 Arduino UNO that uses ATmega328 as a CPU
(https://www.ntu.edu.sg/home/ehchua/programming/arduino/images/ArduinoU

no.png)

IVV. DEVELOPMENT AND OUTPUT

Starting point of this system is at the client, either
Classic Windows Form or ASPNET Web Form
Applications as shown in Figure 4. Client, GUI part,
sends Digital On/Off control data to .NET Web Services
(Web Methods) that locates in IIS Web Server on
PC. .NET Web Services, which works as business logic
part, feeds the data to Arduino instance microcontroller
board. Arduino connects to the PC via USB port.
Arduino then sends serial data to CD4094BE SIPO Shift
Registers. These Shift Registers convert the serial data to
parallel one and send to destination devices. In this
project, the destination devices are LED's

TABLE 1 PIN MAP BETWEEN IC AND ARDUINO BOARD

Pin# on Most Pin# on Least Pin# on Arduino
Significant IC Significant IC Board
1 1 10
2 9
3 3 11
2 12
A. Hardware Portion
This prototype circuit uses 16 LED's as

destination devices for getting Digital On/Off control
signals as shown in Figure 5. Data are sent from Web
Services on PC to Arduino via USB port at position 1 in
the figure. Position 2 is Pin 10 of Arduino works as
strobe for controlling CD4094BE Shift Register about
what to do between reading data in or writing data out.
Position 3 is Arduino's Pin 12 that work as data tube
between Arduino and Shift Register. Two CD4094BE
SIPO Shift Registers that connect to Digital On/Off
destination devices (in this case, they are LED's) are

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

shown at Position 4 in Figure 5 while 16 bit LED's are at

)

g

Position 5.

Qy

>

FF2

SET

R

2

7]

Q. Qq
l FF3 _I
| DSE\' Q
>
an 0.
CLEAR

Figure 3 4-bit SIPO Shift Registers.
(http://www.ee.usyd.edu.au/tutorials/digital _tutorial/part2/pics/regist03.jpg)

\
|

Qo
FFO [FF1
Input data D SET 0 | g
> >
CWR g CR
CLK |
PEOOLEEELE
8 On/Off
Independent Gy
Output Signals e
[Shifted .
P00 I
8 On/Off e
Independent { Pemate!
Output Signals Séria|
In
Windows
App. |~
. — | Arduino
Web A

App.

Figure 4 Overview of Controlling System

Figure 5 Sending output control signals (Shift Out)
by CD4094BE from Arduino

el

e @ http://localhost:3133/Default.aspx

p-¢

& localhost

LearnShiftOutClientViaWS01Form n
M1 14 413 F12 O [Jw0 19 D& H7 @™ O5 14 M3 M2 M1 MO
E[gmer il | Summary - COM Port:
Figure 6 Check "Timer Enable" to send summarized data automatically every second.
- O

CJTimer COM:

BOF0 - 1011000011110000

%

M15 [Ji4 M13 M12 O b 09 O8 M7 Mée M5 M4 O3 [O2 [1

Jo

Figure 7 ASPNET Web Form Client for sending 16 bit Digital On/Off control data

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

Power Plug 9V 250mA

S
=1
oy
[N
1
R
N
1
)
N
-~
AN
AN
N
N
N

All resistors
are 500 Ohm.

cd4094be-SIPO1

© PISO

cd4094be-SIPOO

 pso

Arduino
YUN

fritzing

Figure 8 Schematic diagram of the project

In Figure 5, as there are 2 SIPO Shift Registers, standalone. Steps of working inside this client are as

one must be assigned as the most significant IC and follows.

another will be the least significant one. The above
breadboard is the least significant IC while the bottom
breadboard is the most significant IC. Both IC's have to
be wired together and link to Arduino board as stated pins
in Table 1. Schematic diagram of the project is shown in
Figure 8.
B. Software Portion

There are 3 parts in software portions. (Source
code of all software portions can be downloaded from
http://goo.gl/gsTPZr)

1) Client Software

This project contains 2 sample kinds of client,
Classic Windows Form Application and ASP.NET Web
Form Application. Both of them refer to Web Methods
in NET Web Services in 2).

a) Classic Windows Form Application

User Interface of this kind of client is as Figure
6. Classic Windows Form Application can run as

(@)

(b)

(©

(d)

Get COM port number that is used for serial
communication between PC and Arduino (check
from “Device Manager” in “Control Panel” of
Microsoft Windows).

Start the program. The screen will be like Figure
6. Fill COM port number that is gotten from (a).
Each of sixteen CheckBoxes represent the
corresponding 16 bit on/off digital control
signals.

After checking the CheckBoxes, manually click
the "Summary" button. The collection of on/off
data from CheckBoxes will be summarized to be
binary string and sent to "SIPOService" Web
Services that locates in IIS Web Server.
"SerialPortOpen" Web Method will be called.
The parameter for this Web Method is port
number. It will open the specified serial port
(USB) to be ready for using.

(¢) The next Web Method that is called is
"SummarizeDigitsAndWrite2Serial". This Web
Method needs binary string data, gotten from
client, as a parameter. This Web Method will
write data to serial port and show Message Box
stating the data written in both hexadecimal and
binary format. This data will be used by

Arduino.

(f) After finish sending, "SerialPortClose" Web
Method will be called.

(9) Steps from (b) to (f) are manual working. There

is another way that will submit summarized data

repeatedly in a period of time. User just check

the "Timer Enable" CheckBox as shown in

Figure 4.4. If doing like this, the step from (b) to

(d) and (f) will be done every second. (Step (e)

will be skipped as there will be too many

MessageBox).

b) ASP.NET Web Form Application

Working logic of the Web Services client in the
format of ASPNET Web Form Application are rather
similar to the Classic Windows Form Web Services client.
By the way, there is some difference in background
technique behind “Timer” control in both platforms.

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

“Timer” in ASPNET Web Form is not similar to other
web controls like what is in Windows Form. Developer
needs to use special technique which is called “AJAX”
(Asynchronous Javascript And XML). The prominent
point of AJAX is it supports asynchronous processing.
Another issue user needs to keep in mind is any Web
Applications require browser as its running environment.
In this project, ASP.NET Web Form Application uses IIS,
too.

Steps of working for ASPNET Web Form
Application are almost the same as (a) to (f) of a) except
at (e) in Web Application, the submitted data will not
show in Message Box. It will be in label format as
pointed by the arrow cursor in Figure 7.

Automatic sending changed control data to
Arduino every second can be done in the same way as in
Classic Windows Form application. User just check the
"Timer" CheckBox.

Table 2 shows sample of control data that are
sent from client program (Windows or Web Application)
to destination devices (LED's). Table 2 provides just 3
samples. In fact, because there are 16 bit Digital On/Off
control signal choices, there can be 65,536 different
results (2 raised to the 16th power combinations)

TABLE 2 SAMPLE RESULT OF DATA SENT FROM SIGNAL SOURCES TO DESTINATIONS ON CLIENT'S SCREEN

. . Microcon
Client Program .(W{ndows Web Server troller Electronic Parts
or Web Application)
Parts
Sam Check Destination
le Box Hexa SIPO Shift Registers Devices (n=on,
P #15-0 . Hexa . Binary f=off)
_ Binary . decimal . Ardu
(c= String decimal String String ino
checked, String (XML) LED LED
u=un (XML) MSB LSB | wiss | #7-0

checked)

ccccuuuu | 11110000 11110000 nnnn nfnf
! cucucucc | 10101011 FOAB FOAB 10101011 FOAB 11110000 | 10101011 fff nfin

uuucuucu | 00010010 00010010 fffn nffn
2| cuuceeuu | 10011100 | '*9€ 129€ 10011100 129C | 00010010 | T00ITI00 | 4pp | gy

cuuuuuuc | 10000001 10000001 nfff ftfn
3 wuuceuuy | 00011000 8118 8118 00011000 8118 10000001 | 00011000 fffn fff

===> Data Direction ===>
strPortNumber)

2) Web Service Software
NET Web Services part, from Figure 9, contain

4 Web Methods as follows.
a) Web Method for opening specified serial port
[WebMethod (Description "Open Serial Port
COM#")]
public bool SerialPortOpen (string
strPortNumber)
This Web Method requires input as a string (serial
port number) and returns output as a bool stating
whether port opening succeeded or not.
Web Method for closing specified serial port
[WebMethod (Description = "Close Serial
Port")]
public bool SerialPortClose ()
This Web Method returns output as a bool stating
whether port closing succeeded or not.
Web Method for checking whether the specified port
is available or not
[WebMethod (Description="Check whether port
is Avalable")]
public bool IsPortAvailable (string

b)

10

This Web Method requires input as a string (serial
port number) and returns output as a bool stating
whether status of the specified port is available.
Web Method for getting data from series of

CheckBox and send to serial port.

[WebMethod (Description="Please provide 16
bit binary and write to serial port")]
public string
SummarizeDigitsAndWrite2Serial (string
strBinStatus)

This Web Method needs binary string data as a
parameter. The binary string data will be converted
to hexadecimal and sent to serial port. The
hexadecimal data that is written to serial port will be
returned from the Web Method, too.

These Web Methods will be used by client
applications. Testing page of the Web Methods in .NET
Web Services that is provided by .NET framework is
shown in Figure 9. In Figure 9, user wants to test
"SummarizeDigitsAndWrite2Serial" Web Method that

d)

requires binary string as its parameter. After clicking,
Figure 10 will show up. After filling binary string and
click "Invoke" button, the result page will show up as
Figure 11. Sample result of the Web Method in Web
Services is shown in Figure 11. It will be in XML format.

SIPOService

The following operations are supported. For a formal definition, please review the Service Description.

IsPortAvailable
Check whether port is Avalable

¢ SerialPortClose
Close Serial Port

* SummarizeDigitsAndWrite2Serial
Please provide 16 bit binary ag™write to serial port

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

This XML data will be consumed by the client of Web
Services

C# code of the SIPOService Web Services is
shown in Figure 12. This Web Services codes are located
in IIS Web Server.

Figure 9 List of Web Methods of SIPOService thouse are shown in test page

SIPOService 2

Click here for a complete list of operations.

SummarizeDigitsAndWrite2Serial
Please provide 16 bit binary and write to serial port

Test

Parameter Value

To test the operation using the HTTP POST protocol, click the 'Invoke' button.

strBinStatus: |l111000010101010

x]|

SOAP 1.1

Invoke[

Figure 10 Web Method will provide the parameter input page if it needs parameter value.

@ http:

localhost/SIPOws/S

ceasmx O ~ € || & 5IPOService We...

(] X

& localhost

<?xml version="1.0" encoding="UTF-8"2>

<string xmins="http://SIPO.gmis.co.th/">FOAA</string>

Figure 11 Sample hexadecimal string data gotten from “SummarizeDigitsAndWrite2Serial” Web Method.

3) Arduino Software
Codes of Arduino are in Figure 13. Processes of
Arduino Layer Software when getting Digital On/Off
control data from Web Services via its serial port are as
follows
(1) Getting Serial Data (in hexadecimal format) from
Web Services
(2) Transform Serial Data to be Parallel Data
(3) Arrange High and Low Bytes to send Digital On/Off
control signal to appropriated destination (LED's).

V. CONCLUSION

The project can do as the objective which is
sending multi-bit Digital On/Off control signals from
multi-platform clients via standard Web Services through
only one input port of Arduino to multiple destination
devices. This project separates task to 3 parts, user inter
face part (client software), business logic part (Web
Services) and microcontroller with device part (Arduino).
Sample multi-platform clients in this project are Classic
Windows Form and ASP.NET Web Form applications.
Steps of working are as follows. Any platform clients,

11

that support Web Services, send multi-bit Digital On/Off
control data to Web Services. Web Services sends that
serial data to Arduino. (The reason that data should be in
serial format is it will consume just one output port at
Arduino board.) Arduino with the cooperation of SIPO
Shift Registers (CD4094BE) transforms serial data to
parallel data and distributes to appropriated digital
devices. By using SIPO Shift Registers, customers can
cascade more modules which can extend amount of
control data bit and destination devices as need.

VI. FUTURE WORK

There are many issues that can do further from
this project. First, creating clients in other platforms, such
as, java, android and iOS. Second, wrapping data
communicated in the whole project with standard
industrial bus, such as Modbus TCP.

REFERENCES

H. Haas and A. Brown, “Web Services Glossary.
W3C,” W3C Working Group Note, 2004.
[Online]. Available: http://www.w3.org/TR/ws-

[1]

gloss/. [Accessed: 09-Sep-2015].

“Getting Started with Arduino,” 2016. [Online].
Available:
https://www.arduino.cc/en/Guide/HomePage.
[Accessed: 11-Apr-2016].

“Multiplexer and Demultiplexer,” 2013. [Online].
Available:
http://www.electronicshub.org/multiplexer-and-
demultiplexer/. [Accessed: 08-Sep-2015].

“Shift Registers,” 2014. [Online]. Available:
http://www.ee.usyd.edu.au/tutorials/digital tutoria
I/part2/register01.html. [Accessed: 08-Sep-2015].

(2]

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016
[3]

P. Lau, “Serial In-Parallel Out Shift Register,”
School of Electrical & Information Engineering,
University of Sydney, 2010. [Online]. Available:
https://www.ee.usyd.edu.au/tutorials/digital tutori
al/part2/register03.html. [Accessed: 11-Apr-
2016].

APPENDIX

Essential codes of the project come from parts of

Web Services and Arduino are listed in Figure 12 and 13
respectively.

using System;
using System.Collections.Generic;
using System.|O.Ports;
using System.Web;
using System.Web.Services;
namespace LearnShiftOutClientWS01Prj {
[WebService(Namespace = "http://SIPO.gmis.co.th/")]
[WebServiceBinding(ConformsTo =
WsiProfiles.BasicProfile1_1)]
[System.ComponentModel.ToolboxItem(false)]
[System.Web.Script.Services.ScriptService]
public class SIPOService :
System.Web.Services.WebService {
static SerialPort srpMain = null;
static bool binlsSerialPortOpen = false;
public static SerialPort SrpMain {
get { return srpMain; }
set { srpMain = value; }

public static string StrBinStatus { get; set; }
public static string StrHexStatus { get; set; }
public static string StrCOMPort { get; set; }
public SIPOService() {}
public string ConvertBinStringToHexString(string
strBinString) {

inti= Convert.Tolnt32(strBinString, 2);

string strHex = i.ToString("X4");

return strHex;

}
[WebMethod(Description="Please provide 16 bit binary and
write to serial port")]
public string SummarizeDigitsAndWrite2Serial(string
strBinStatus) {
string strHexStatus = "";
strHexStatus =
ConvertBinStringToHexString(strBinStatus);
if (!srpMain.IsOpen) { srpMain.Open(); }
srpMain.WriteLine(strHexStatus);
srpMain.Close();
StrBinStatus = strBinStatus;
StrHexStatus = strHexStatus;
return strHexStatus;

Avalable")]

[WebMethod(Description="Check whether port is

public bool IsPortAvailable(string strPortNumber) {
if (SrpMain.PortName == "COM" + strPortNumber) {
return binlsSerialPortOpen;
}else {
return false;

}
[WebMethod(Description = "Open Serial Port COM#")]
public bool SerialPortOpen(string strPortNumber) {
try {
srpMain = new SerialPort();
SrpMain = srpMain;
SrpMain.PortName = "COM" + strPortNumber;
SrpMain.BaudRate = 9600;
SrpMain.Parity = Parity.None;
SrpMain.DataBits = 8;
SrpMain.StopBits = StopBits.One;
SrpMain.DtrEnable = true;
SrpMain.Open();
StrCOMPort = SrpMain.PortName;
if (SrpMain.IsOpen == true)
binlsSerialPortOpen = true;
return binlsSerialPortOpen;
} catch {
srpMain.Dispose();
srpMain.Close();
binlsSerialPortOpen = false;
return binlsSerialPortOpen;

}

}
[WebMethod(Description = "Close Serial Port")]
public bool SerialPortClose() {
bool binlsSerialPortClose = false;
SrpMain.Close();
if (SrpMain.IsOpen = true) {
binlsSerialPortClose = true;

return binlsSerialPortClose;

}
}

Figure 12 Web Services Code (SIPOService) (LearnShiftOutClientWS01.asmx.cs)

12

International Journal of Applied Computer Technology and Information Systems: Volume 5, No.2, October 2015 - March 2016

int intStobePin, intClockPin, intDataPin;
intintToggle = -1;

int intinputMaxDigit = 16; // 16 bit

int UIntDataOut = 0;

char chrBuffer[4];

void ShiftOut(int intDataPin, int inClockPin, u16 bytDataOut, int

intMaxDigit) {
int intPinState = 0;
for (int i = intMaxDigit; i >= 0; i--) {
digitalWrite(intClockPin, 0);
if (bytDataOut & (1 <<1)) {
intPinState = 1;

else {
intPinState = 0;

}
digitalWrite(intDataPin, intPinState);

digitalWrite(intClockPin, 1);
digitalWrite(intDataPin, 0);

}
digitalWrite(intClockPin, 0);

void setup() {
intStobePin = 10;

intClockPin = 11;

intDataPin = 12;
pinMode(intStobePin, OUTPUT);
pinMode(intClockPin, OUTPUT);
pinMode(intDataPin, OUTPUT);

z/oid loop() {

u16 UlntDataGet = 0;
int intT = Serial.available();
if (intT > 0) {

Serial.available());

Serial.readBytesUntil("\n', chrBuffer,

UlntDataGet = strtol(chrBuffer, NULL, 16);
Serial.print(UIntDataGet, BIN);
Serial.print(" - ");
Serial.printin(UIntDataGet, HEX);
digitalWrite(intStobePin, LOW);
ShiftOut(intDataPin, intClockPin,

UIntDataGet, intinputMaxDigit);

}

digitalWrite(intStobePin, HIGH);
delay(500);

Figure 13 Arduino Code (LearnShiftOut03Prj.ino)

13

	Binder1.pdf
	114-142-1-SM.pdf
	116-146-1-SM.pdf
	98-114-1-SM.pdf
	Kobthong_Eng.pdf

