
Transforms Class to Formal Specification By Object-Z

Wasun Khan-am1

1Associate Professor: Dept. of Information Systems

Faculty of Business Administration, RMUTT
Pathum thani, Thailand 12110
e-mail: wasun_k@rmutt.ac.th

บทคัดย่อ – บทความนี�นาํเสนอตวัอยา่งของการเปลี�ยน

สญัลกัษณ์คลาสในแผนภาพคลาสเป็นรายละเอียดแบบเป็น

ทางการดว้ยการใชส้ญัลกัษณ์ซีด และวตัถุแบบซีด ในการสร้าง

แผนภาพคลาส มีการกาํหนดสญัลกัษณ์ที�ใชเ้ป็นตวัแทนของ

คลาส สญัลกัษณ์ที�ใชเ้ป็นตวัแทนของคลาสจะถกูแยกออกเป็น

สามส่วน แต่ละส่วนของสญัลกัษณ์คลาสจะถกูนาํไปเปลี�ยนเป็น

แต่ละส่วนที�อยูใ่นวตัถุแบบซีด เมื�อดาํเนินการจนครบจะไดว้ตัถุ

แบบซีดที�สอดคลอ้งกบัสญัลกัษณ์คลาสในแผนภาพคลาส

คําสําคญั: สัญลักษณ์แบบซีด, การแปลงคลาส, รูปแบบอย่างเป็น

ทางการ

Abstract — this paper presents an example for
transforming class symbol in class diagram to formal
specification using z-notation and object-Z. In class
symbol, there are three parts in class. Each part of given
class transforms to each section of Object-Z model. To
sum up, the result is found that transform class to formal
specification by z-notation and object-Z is possible as
show in this paper.

Keywords Z-notation; object-Z; transform class; formal
specification

I. INTRODUCTION

Formal Specification is a kind of mathematics
language. The benefit of formal specification is concise
due to using mathematics symbol.

 Object-Oriented Design is a famous method which use
to design proposed system or application. The detail
design output which is essential for development are a
class diagrams and interaction diagrams including:
sequence and communication diagram. The detail design
output is show a vision of purposed system called model.

 Although the model have been obtained, but sometime
model is vague for system development. Programmer may
or may not be able to create correctly program corresponds

to a designed model. It should be made as an obvious
model. The formal specification of purposed system need
to be generated with a mathematical models. The final
detail model is clear for application development.

At the last ACTIS’2016, my presentation about apply
JavaScript module to create pie graph and for making
model precisely, I need to create a formal specification for
my application as show in this paper.

II. LITERATURE REVIEW

This content of this paper relevant with formal
specification, notation for creating formal specification;
and class design, by using UML tools.

A. Formal Specification [1]-[2]

 Formal specification is process that use for creating
definitely model of a proposed system. It is an
unambiguous description of system function, ease of
implementation, and be verifiable such as a mathematical
proof.

B. Z-notation [1]-[2]

Z-notation is a one approach to generate formal
specification. It normally use to transform structure or
state diagram to specification. The transformed
specification is transform again to program. The advantage
of z-notation are to make a specification clear and precise.

The main idea of Z is to decompose a specification into
small pieces, called schemas. After break up, the pieces
need to describe in formal mathematics. There are two
aspects of Z are: static aspects including state, and
invariant relationships; and dynamic aspects including
operation, relationship, and state transition.

C. Object-Z [3]-[5]

Object-Z is expanded from the Oxford formal
specification language Z and works under object-oriented
context. By using Object-z, developer can specify a set of
states that system be moving from one state to other. This
legally way be called as system’s operations.

International Journal of Applied Computer Technology and Information Systems: Volume 6, No.1, April 2016 - September 2016

35

The main extension in Object-Z is class which
encapsulates of state schema and operation affecting to
state. The symbolic represent class show in the next below.

 ClassName[generic parameters] 

inherited classes

type definitions

constant definition

state schema

initial state schema

operation schema



history invariant



D. UML [6]

UML is an object-oriented tool. The word “UML”
stands for Unified Modeling Language, and is a two-
dimension language to model target system in object-
oriented style. UML consists of a diagram for
documenting target system, and presenting an interaction
among objects; and dynamics of those object.

In UML, There are fourteen diagrams as: use case,
class, object, state machine, activity, interaction overview,
sequence, communication, component, deployment,
profile, timing, composite structure, and package diagram.

Class diagram consists with class and relationship
among those class or object instanced from class. The
class represents by the follow symbol.

Figure 1. Class symbol

Figure 1 show a class symbol with 3 compartment are:
 The top compartment refer to class name
 The middle compartment refer to class’ attribute
 The low compartment refer to class’ method or

operation or behavior

III. RESULT

In this section, a class design and result of class
transformation are presented.

A. Class design

In class diagram, the MYG_MODEL class is designed
as a kind of model class and is shown in the figure 2.

B. Class result

Firstly, the transformation are starting from translate
class to formal specification as follow:

 MYG_MODEL 

{Place for attribute}

{Place for operation}





In the formal specification above, there are two

compartments. First compartment is for attribute and
another space is for operation. Both of space need to fulfill
at the end of transformation.

Figure 2. MYG_MODEL represent MODEL in MVC of application.

In figure 2, there are 10 attributes, 4 array of integer; 2
string and 4 integer; and 28 methods including 8 set
methods; 16 get methods and 4 other methods; in
MYG_MODEL class

Class name

Attribute list

Method or
operation list

MYG_MODEL

-data, label, split, color: array of Integer
-title, id: String.
-cx, cy, radius, gap: Integer

+new()
+add_data()
+set_data_label()
+set_split()
+set_unsplit()
+get_data_size()
+get_title()
+get_cx()
+get_cy()
+get_radius()
+begin_radian()
+end_radian()
+get_color()
+get_mid_part()
+get_sum()
+get_gap()
+get_data()
+get_data_label()
+get_graph_id()
+get_all_data()
+get_all_split()
+get_all_label()
+set_graph_id()
+set_title()
+set_radius()
+set_data()
+set_color()
+delete_data

International Journal of Applied Computer Technology and Information Systems: Volume 6, No.1, April 2016 - September 2016

36

C. Attribute result

Secondly, all attribute of class are transformed to type
definition, constant, and state schema and replace back to
the class specification. The output is shown next.

 MYG_MODEL 

[CHAR]

STRING: seq CHAR



cx, cy, radius, gap: 

id, title: STRING

label: STRING

data, split: 



cx > radius  cy > radius

radius > 0  gap > 0







D. Init-operation

When attribute transformation have been finished, Init
operation is an essential operation that have to be created.
The Init-Operation is a special objective operation that use
for initializing proper value to all attribute and running
special tasks.

 Init 

cx, cy, radius, gap: 

id, title: STRING

label: STRING

data, split: 



cx > radius  cy > radius  cx > 0  cy > 0 

radius > 0  gap > 0

cx = cy = 300

radius = 100

id = title =  

data = split =label = 



E. Other operation

After Init-Operation has been declared, the next task
are to transform other operations in class to formal
specification. The result of this operation show as below.

 add_data 

 (data, label, split)

num: 



num = #data

data = data  {num 0} 

split = split  {num 0} 

label = label  {num ‘data ’+num}



 set_split 

 (split)

num?: 



num < #data

split = split  {num? 1}



 set_unsplit 

 (splitl)

num?: 



num < #data

split = split  {num? 0}



 get_data_size 

data_size!: 



data_size! = #data



 set_data_label 

 (label)

num?: 

label? : STRING



num < #data

label = label  {num? label?}



 begin_radian 

num?, before, radian! : 



num? < #data

before = 0 

 i : 1..num?-1  before = before + data(i)

sum = self.get_sum()

radian! = 2* * before / sum



International Journal of Applied Computer Technology and Information Systems: Volume 6, No.1, April 2016 - September 2016

37

 end_radian 

num?, end, radian! : 



num? < #data

end = 0 

 i : 1..num?  end = end + data(i)

sum = self.get_sum()

radian! =2** end / sum



 get_graph_id

id!, id: STRING



id! = id



 get_title 

title!, title: STRING



title! = title



 get_cx 

cx!, cx: 



cx! = cx



 get_cy 

cy!, cy: 



cy! = cy



 get_color 

color!, num?: 

color : 



num? < #data

color! = second({num?} color})



 get_mid_part 

sum!, sum, num? : 



#data > 0  num? < #data

sum = 0

i : 1.. num? - 1  sum = sum + data(i)

sum! = sum + data(num?) /2



 get_all_data 

data!, data : 



data! = data



 get_gap 

gap!,gap: 



gap! = gap



 get_sum 

sum!, sum: 



 #data > 0

sum = 0 

i : 1..#data  sum = sum + data(i) 

sum! = sum



 get_data 

data!, num?: 

data : 



num? < #data

data! = second({num?} data})



 get_radius 

radius!, radius: 



radius! = radius



 get_data_label 

num?: 

label!: STRING

label : STRING



num? < #data

label! = second({num?} label})



 get_split 

split!, num?: 

split : 



num? < #data

split! = second({num?} split})



 get_all_label

label!, label: STRING



label! = label



 get_all_split 

split!, split: 



split! = split



International Journal of Applied Computer Technology and Information Systems: Volume 6, No.1, April 2016 - September 2016

38

 set_graph_id 

 (id)

id, id?: STRING



id = id?



 set_radius

 (radius)

radius, radius?, cx, cy: 



radius? < cx  radius? < cy  radius? > 0

radius = radius?



 set_data 

 (data)

num?, data?: 

data : 



num? < #data

data  {num? data?}



 set_color 

 (color)

num?, color?: 

color : 



num? < #data

color  {num? color?}



 delete_data

 (data)

delete_set?, tmp, data : 

label?, tmp1 : STRING



tmp = 

tmp1 = 

 i: 1..#delete_set?

 tmp = tmp  {delete_set(i) data(i)}

data = data \ tmp

tmp = 

 i: 1..#delete_set?

 tmp = tmp  {delete_set(i) split(i)}

split = split \ tmp

 i: 1..#delete_set?

 tmp1 = tmp1  {delete_set(i) data(i)}

label = label \ tmp1



 set_title 

 (title)

title, title?: STRING



title = title?



 set_cx

 (cx)

cx, cx?: 



cx? > radius  cx? > 0

cx = cx?



 set_cy

 (cy)

cy, cy?: 



cy? > radius  cy? > 0

cy = cy?



F. Compose the result

When structure of class was been built and both of
attributes and operations have been transformed, those
attribute and operation should be compose back to an
appropriate position where they should be in. The result of
put them back to the specification is full formal
specification of MYG_MODEL class. Consequently, the
specification is ready to pass to program implementation
phase.

IV. CONCLUSION

Transform class in class diagram to formal
specification have been successful by using both of Z-
language, and Object-Z. All class attributes and class
operations of MYG_MODEL have been transformed. By
using both of the transformed formal specification and a
class diagram not only will assist programmer to create
program better than using only class diagram, but also help
system designer to design a better interaction diagram. The
transformed specification is clear and testable.

REFERENCES

[1] J.M. Spivey., The Z notation: A reference Manual, 2nd ed. Oriel

College. Oxford, OX1 4EW:England. 1998.

[2] ISO, ISO/IEC 13568:2002(E):Information technology-Z formal
specification notation- Syntax, type system, and semantics,1st ed..
Switzerland. 2002.

[3] R. duke, P. King, G.Rose, and G. Smith. The Object-Z
Specification Language: Version 1. Queensland 4072:Australia.
1991.

International Journal of Applied Computer Technology and Information Systems: Volume 6, No.1, April 2016 - September 2016

39

[4] A. Hussey and D.carrington. Using Object-Z to Compare the MVC
and PAC Architectures. Proceedings of BCS-FACS Workshop on
Formal Aspects of the Human Computer Inteface, Sheffield
Hallam University, 10-12 September 1996.

[5] J. Derrick, E.A. Boiten, H. Bowman and M. Steen. Translating
LOTOS to Object-Z. Proceedings of the 2nd BCS-FACS Northern
Formal Methods Workshop, Ilkley, 14-15 July 1997.

[6] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide, Addison-Wesley. 1999.

International Journal of Applied Computer Technology and Information Systems: Volume 6, No.1, April 2016 - September 2016

40

	Binder1 34.pdf
	Binder1 35.pdf
	Binder1 36.pdf
	Binder1 37.pdf
	Binder1 38.pdf
	Binder1 39.pdf
	Binder1 40.pdf

