
International Journal of Applied Computer Technology and Information Systems: Volume 7, No.2, October 2017 - March 2018

35

Lightweight Web-based Data Flow Diagraming Tool

Naravut Pattanotai1

1Faculty of Science and Technology

Rajamangala University of Technology Suvarnabhumi, Suphanburi Campus

Suphanburi, Thailand

naravut.p@rmutsb.ac.th

บทคัดย่อ—แผนภาพกระแสขอ้มูล (Data flow diagram) ยงัคง
ถูกใชอ้ย่างกวา้งขวางในการพฒันาซอฟต์แวร์ ขอ้ผิดพลาดทาง
ไวยากรณ์ในแผนภาพกระแสข้อมูลสามารถเกิดข้ึนได้เม่ือ
แผนภาพนั้นไม่เป็นไปตามกฎของการสร้างแผนภาพ งานวิจยัน้ี
เสนอเคร่ืองมือในการสร้างแผนภาพกระแสขอ้มูลบนเวบ็ขนาด
เล็กซ่ึงสามารถสร้างแผนภาพไดอ้ย่างง่ายและรวดเร็ว จากโค้ด
อย่างง่ายท่ีพฒันาข้ึนโดยเฉพาะ เคร่ืองมือน้ียงัสามารตรวจสอบ
ความถูกต้องของแผนภาพตามกฎทางไวยากรณ์ได้อย่าง
อตัโนมติั ตวัอย่างของผลลพัธ์แสดงให้เห็นถึงการใชป้ระโยชน์
ในการสร้างแผนภาพกระแสข้อมูล ทั้งยงัช่วยลดข้อผิดพลาด
ทางไวยากรณ์ และสามารถน าไปใชใ้นงานบนเวบ็อ่ืนไดต่้อไป
ค ำส ำคญั: แผนภำพกระแสข้อมลู, กฎของแผนภำพกระแส

ข้อมลู, โปรแกรมสร้ำงแบบจ ำลองบนเวบ็ขนำดเล็ก

Abstract—Data flow diagram (DFD) is still widely used

in the software development. The syntax errors in DFD

can occur when the diagrams are not following its rules.

This work purposes the lightweight web-based data flow

diagraming tool which simply and quickly creates a DFD

by the specific developed simple code. The tool also

automatically validates the diagram based on formalized

syntax rules of DFD. The example results show how to

facilitate data flow diagramming and also to reduce

syntax errors of DFD, which can use in the future other

web-based works.
Keywords-data flow diagram; data flow diagram rules;

data flow diagramming; lightweight web-based modeling tool

I. INTRODUCTION

Although the object-oriented analysis and design has
introduced, the structured system analysis is still widely
used in the software development. The most commonly
used diagram in the structured system analysis is the data
flow diagram (DFD). It illustrates all processes which

transform the data within the system. Development project
members can see all components of the system working
together at once with DFD. Clients and end users can read
and interpret DFD with minimal training. These are why
DFD is still popular.

However, there is the rule for data flow diagramming.
The errors in DFD can occur when the diagrams are not
following its rules. There are many tools to data flow
diagramming. Some tools are drawing tools and some are
modeling tools. This work will present the lightweight
web-based data flow diagraming tool to facilitate
diagramming and also automatically validate it.

The rest of this paper is organized in the following
manner: section II. discusses the related works on data
flow diagramming followed by section III. that give an
overview of DFD and its syntax rules. Section IV. is
dedicated to the purposed tool and its result. Finally, the
conclusion and future work are in section V.

II. RELATED WORK

We can use a variety of tools to data flow
diagramming, from freeware to commercial software.
Most of the tools are the graphical drawing tools which
cannot validate the diagram. However, there some tools
which can validate the DFD while drawing. These tools
were called modeling tool. The modeling tools help
improve the quality of the result diagram, but most of them
still cost highly.

In 2010-2011, Ibrahim and Yen [1-3] purposed
formalized the DFD rules for consistence check between
the context diagram and level 0 DFD. They also developed
the tool for drawing and checking the consistency of these
two diagrams. Their tool is a desktop application. This
work will present a web-based data flow diagraming tool
which can use through a user’s web browser.

In 2017, Pattanotai [4] purposed the pattern for DFD
classes based on purposed formalized syntax rules of
DFD. This facilitates data flow diagramming and also
reduces syntax errors of DFD by using object-oriented
paradigm. These pattern classes were implemented by
using C# programming language and using JavaScript
library, jsPlumb toolkit [5], to draw a data flow diagram.
This work will present a text-based tool for quickly
creating DFD and also automatically validate it.

International Journal of Applied Computer Technology and Information Systems: Volume 7, No.2, October 2017 - March 2018

36

III. DFD AND ITS SYNTAX RULES

DFD is a graphical system model which illustrates the
movement of data between external entities and the
processes and data stores within a system. [6] Truly, DFD
focuses on the processes which are performed, not on data.
There are four elements or symbols in DFD and there are
two commonly used styles of each graphical symbol, one
set developed by DeMarco [7] and the other by Gane and
Sarsen. [8] These symbols were shown in Table I.

TABLE I. DFD SYMBOLS STYLES

DFD Element
DeMarco

Symbols

Gane and Sarsen

Symbols

External entity

Data flow

Name

Name

Process

Data store

D1 Name

D1 Name

An external entity is a person, organization, or other

system which is external to the system, but supplies input
data or accepts output data.

A data flow is a single piece of data, or a logical
collection of several pieces of information.

A process is an activity or a function which is
performed for some specific business reason.

A data store is a collection of data that is stored in
some way.

There are two fundamentally different types of
problems which can occur in DFDs: syntax errors and
semantics errors. Syntax errors can occur when the
diagrams are not followed to the rules of the DFD.
Semantics errors can occur when the meaning of the DFDs
is not accurately describing the business process being
modeled. Syntax errors are easier to find and fix than
semantics errors, because there are clearly rules which can
be used to identify them. [9]

The syntax rules of each DFD element are as follows:

A. External entity

1) Every external entity must have a unique name.

2) Every external entity must have at least one input

or output data flow.

B. Data flow

1) Every data flow should have a unique name.

Because the process changes the data input into a

different data output in some way. Therefore output data

flows usually have different names from input data flows.

However, there is some process which just passes the data

to another without changing it. Therefore, this rule can

overlook.

2) Every data flow must connect to at least one

process.

3) Data must flow only in one direction.

C. Process

1) Every process must has a unique name.

2) Every process should have at least one input data

flow. A process without any inputs, but produces outputs

is called a miracle error because output data miraculously

appear. However, this can appear when that process issues

a trigger output based on an internal time clock.

3) Every process must have at least one output data

flow. A process without any outputs, but receives inputs is

called a black hole error.

D. Data store

1) Every data store must have a unique name.

2) Every data store must have at least one input data

flow.

3) Every data store should has at least one output

data flow. If there is only an output, this data store would

be an external entity.

From syntax rules of DFD, there are only 5 ways to

draw a data flow. They are:
1. from an external entity to a process
2. from a process to an external entity
3. from a process to a data store
4. from a data store to a process
5. from one process to other process

[4] purposed formalized syntax rules of DFD. All

possible data flows which can connect from one DFD
node (external entity, process, and data store) to another
node was shown in Table II.

TABLE II. CONNECTION BETWEEN DFD NODES RULES

End node

Begin node

External

entity
Process Data store

External entity

Process *

Data store

* Note that, a process cannot send a data flow to itself,
it must send to the other process.

[4] also purposed the summary of input and output data

for each DFD node which were shown in Table III.

TABLE III. INPUT AND OUTPUT DATA OF DFD NODES RULES

DFD node Input Output

External entity must

Process should must

Data store must should

1

Name

Name

1

Name

Name

International Journal of Applied Computer Technology and Information Systems: Volume 7, No.2, October 2017 - March 2018

37

IV. PURPOSED TOOL AND RESULT

This work develops a text-based tool for rapidly
creating DFD and also automatically validate it. This tool
was implemented by JavaScript and using the jsPlumb
toolkit [5] to draw a data flow diagram. The example tool
is shown in Fig. 1. It is composed of two main parts. The
upper part shows the resulting diagram while the lower
part is a text box for user entry the code of the diagram.

Figure 1. Lightweight web-based data flow diagraming tool

This work develops the simple code which represents
DFD nodes and data flows. Then, the tool will parse these
codes to DFD. The syntax code for each DFD element was
shown in Table IV.

TABLE IV. SYNTAX CODE FOR DFD ELEMENT

DFD element Syntax code

Data flow {DFD begin node}>{Data}>{DFD end node}

External entity {Name of external entity}

Process {Number of process}/{Name of process}

Data store D{Number of data store}/{Name of data store}

To diagraming the login process which similar to what

is shown in Fig. 2(a), the source code of this diagram is
shown in Fig. 2(b).

(a)

User>username, password>1/Login

D1/User account>user data>1/Login

1/Login>user role>User

(b)

Figure 2. Login process and its source code

From Fig. 2, each line of code is a data flow, which
connects between two DFD nodes with a text data node in
the middle. Each node in the data flow code separates by
‘>’ character. The first node is the data sender and the last
node is the data receiver. The ‘>’ character also indicates
the direction of the data flow, from left to right.

To draw an external entity node, there is not require
any special markup, just type the name of that external
entity node.

To draw a process, a user has to type the number of the
process, following by ‘/’ character and the process name.

To draw a data store, user is required to type ‘D’
character follow by the number of the data store and ‘/’
character with the data store name.

If there is any syntax error in the diagram, the tool will
show the message. In Fig. 1, there is one warning message
because there is not any input data flow to the User
account data store.

This tool allows user to create wrong data flows in the
diagram. Considering Fig. 3, the syntax error DFD (a) and
its source code (b) is shown. User can draw a data flow
between an external entity and a data store, or a DFD node
sends a data to itself. However, the tool will always show
the error or warning messages.

(a)

Customer>Residence data>D4/Customer location

2/View cart>Selected product>2/View cart

Customer>Confirm email>Customer

(b)

Figure 3. Syntax error DFD and its source code

This work selects the barbershop system to be the case
study for experimentation. This shop system has two
external entities: shop owner and hairdresser, 4 processes
and 3 data stores. The code of level 0 DFD of the
barbershop system is shown in Fig. 4. Another
experimentation is a sub level DFD. The code of level 1
DFD of the maintain hairdresser process is shown in Fig.
5. Their result diagrams are shown in Fig. 6 and 7
accordingly. There is not any syntax error in these
diagrams.

From all results, the codes are easier than the C# code
of [4] purposed. And the tool also can be used in the
variety of web-based works.

International Journal of Applied Computer Technology and Information Systems: Volume 7, No.2, October 2017 - March 2018

38

Shop Owner>Service data>1/Maintain Service Data

1/Maintain Service Data>Service data>D1/Service

D1/Service>Service data>1/Maintain Service Data

1/Maintain Service Data>Service data>Shop Owner

Shop Owner>Hairdresser data>2/Maintain

Hairdresser Data

2/Maintain Hairdresser Data>Hairdresser

data>D2/Hairdresser

D2/Hairdresser>Hairdresser data>2/Maintain

Hairdresser Data

2/Maintain Hairdresser Data>Hairdresser

data>Shop Owner

Hairdresser>Take care data>3/Create a Receipt

D1/Service>Service data>3/Create a Receipt

D2/Hairdresser>Hairdresser data>3/Create a

Receipt

3/Create a Receipt>Receipt>Hairdresser

3/Create a Receipt>Take care data>D3/Receipt

Shop Owner>Take care dates>4/View Receipts

D3/Receipt>Take care data>4/View Receipts

4/View Receipts>Receipts history report>Shop

Owner

Figure 4. Code of level 0 DFD of the barbershop system

2.1/View All Hairdresser Data>Hairdresser

data>Shop Owner

D2/Hairdresser>Hairdresser data>2.1/View All

Hairdresser Data

Shop Owner>New hairdresser data>2.2/Add

Hairdresser Data

2.2/Add Hairdresser Data>New hairdresser

data>D2/Hairdresser

2.3/Edit Hairdresser Data>Selected hairdresser

data>Shop Owner

D2/Hairdresser>Selected Hairdresser

data>2.3/Edit Hairdresser Data

Shop Owner>Updated hairdresser data>2.3/Edit

Hairdresser Data

2.3/Edit Hairdresser Data>Updated hairdresser

data>D2/Hairdresser

Figure 5. Code of level 1 DFD of the maintain hairdresser process

Figure 6. Level 0 DFD of the barbershop system

Figure 7. Level 1 DFD of the maintain hairdresser process

International Journal of Applied Computer Technology and Information Systems: Volume 7, No.2, October 2017 - March 2018

39

V. CONCLUSION AND FUTURE WORK

This work purposes the lightweight web-based data
flow diagraming tool which quickly creates a DFD by the
specific developed simple code. The purposed tool also
automatically validates the diagram based on formalized
syntax rules of DFD. The examples show how fast and
easy way to diagram by the developed code and also to
reduce syntax errors of DFD, which can use in the other
web-based works.

However, this work focuses on modeling and
validating syntax error on a separate single DFD. To check
consistency through all levels of DFD and context diagram
also will be addressed in further developments. Moreover,
to check semantics error in DFD also may be developed.
These will lead to the complete data flow diagraming tool.

ACKNOWLEDGMENT

The author would like to thank the Faculty of Science
and Technology, Rajamangala University of Technology
Suvarnabhumi, for supporting this work.

REFERENCES

[1] R. Ibrahim and S. Y. Yen, “Formalization of the Data Flow
Diagram Rules for Consistency Check,” International Journal of
Software Engineering & Applications (IJSEA), Vol. 1, No. 4, Oct.
2010, pp. 95-111, doi: 10.5121/ijsea.2010.1406.

[2] R. Ibrahim and S. Y. Yen, “An Automatic Tool for Checking
Consistency between Data Flow Diagrams (DFDs),” International
Journal of Computer, Electrical, Automation, Control and
Information Engineering Vol. 4, No. 9, 2010, pp. 1441-1445.

[3] R. Ibrahim and S. Y. Yen, “A Formal Model for Data Flow
Diagram Rules,” ARPN Journal of Systems and Software, Vol. 1,
No. 2, May 2011, pp. 60-69.

[4] N. Pattanotai, “Pattern of Data Flow Diagram Class,” Joint
Conference on ACTIS & NCOBA, Jan, 2017, Thailand, pp. 27-31.

[5] jsPlumb Pty Ltd., jsPlumb Toolkit, https://jsplumbtoolkit.com/,
2017.

[6] H. J. Rosenblatt, Systems Analysis and Design, 10th ed., United
States of America, 2014.

[7] T. DeMarco, Structured Analysis and System Specifi cation,
Yourdon Press, New York, 1978.

[8] C. Gane, T. Sarsen, Structured Systems Analysis: Tools and
Techniques, Prentice Hall, Englewood Cliffs, NJ, 1979.

[9] A. Dennis, B. H. Wixom, R. M. Roth, Systems analysis and
design, 5th ed., United States of America, 2012.

