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Abstract This paper has studied how to use Deep Q 
Network (DQN) with ROS for path planner of service boy 
robot. We use pymunk library of Python for training the 
neuron network to learn the best action for various input 
states, by principle of reinforcement learning. 
Additionally, we use pygame library for learning 
simulation, observation and evaluation graphically. We 
have designed input states, output actions, and hidden 
layers of the neuron network. After training in predefined 
episodes we use the neuron network to predict the action 

of TurtleBot3 real robot. We use ROS for robot operation 
and use ROS slam_gmapping, amcl, except costmap and 
planners (both global and local planner). Instead, we use 
well trained Deep Q Network to predict the action of the 
robot. The result shows that well trained Deep Q Network 
has more efficient than original ROS planners. It can 
navigate to any place in the map and can reach the goal by 
obstacle avoidance. Absolutely, it can move to any 
destination in the map by orientation ignorance and 
reduce the distance accuracy between destination and the 
robot. Absolutely, it can suitably perform a role of service 
boy, like in the restaurant.

Keywords-DQN, Reinforcement Learning; ROS 
Navigation;      Path planner;  Service boy robot
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Abstract This paper has studied how to use Deep Q Network 
(DQN) with ROS for path planner of service boy robot. We use 
pymunk library of Python for training the neuron network to 
learn the best action for various input states, by principle of 
reinforcement learning. Additionally, we use pygame library for 
learning simulation, observation and evaluation graphically. We 
have designed input states, output actions, and hidden layers of 
the neuron network. After training in predefined episodes we use 
the neuron network to predict the action of TurtleBot3 real 
robot. We use ROS for robot operation and use ROS 
slam_gmapping, amcl, except costmap and planners (both global 
and local planner). Instead, we use well trained Deep Q Network 
to predict the action of the robot. The result shows that well 
trained Deep Q Network has more efficient than original ROS 
planners. It can navigate to any place in the map and can reach 
the goal by obstacle avoidance. Absolutely, it can move to any 
destination in the map by orientation ignorance and reduce the 
distance accuracy between destination and the robot. Absolutely, 
it can suitably perform a role of service boy, like in the 
restaurant.

Keywords DQN, Reinforcement Learning, ROS 
Navigation, 

          Path planner, Service boy robot

I. INTRODUCTION 

Robot Operating System, ROS, is a notable software 
for robot development and has a big community of robot 
developers. ROS has many libraries and widely cover all 
of domains about robot. One of outstanding features of 
ROS is Navigation Stack that can make the robot navigate
to any places in a map it has known. ROS Navigation 
Stack has many related libraries to work together, such as, 
slam_gmapping, amcl, move_base, cost map, global 
planner, base local planner. 

Unfortunately, we have found that ROS global planner 
and local planner cannot well perform in complicated 
situation, like the narrow pathways, because of its 
algorithm limitation by ROS costmap inflation.

In this paper, we have interested in how to adopt the 
Deep Q Network with robot navigation on ROS. By 
reinforcement learning, robot can learn how to interact 
with any states and then take action. It learns by adapting 

which is Q value. The pymunk and pygame Python 
libraries have been used to simulate the learning. We can 
visually observe the behavior of the robot machine 
learning, testing, and evaluation. 

We have designed and tested many factors of 
reinforcement learning, such as, states formats for neuron 
network input, hidden layers of neuron network, reward 
criteria, learning process, number of learning episodes. 

After many experiments we have found the 
convergence of the neuron network, the virtual robot can 
avoid the obstacles and reach the goal altogether. Then we 
have taken this neuron network to predict the action of the 
TurtleBot3 real robot in the room with various obstacles 
patterns. 

We have used some ROS Navigation libraries, they are 
slam_gmapping, odometry, amcl but we have not used  
costmap, move_base navigation. So we have replaced the 
global planner and local planner of ROS with our neuron 
network and have used it to predict the action of 
TurtleBot3. The TurtleBot3 robot can move to any goal in 
the map and can avoid the obstacles.

From our experiment of original ROS Navigation, 
trajectory planner and navfn library can not find the path
when the environment has many narrow path obstacles 
then stuck and stop the robot movement (Figure 1). While 
the TurtleBot3 with DQN could avoid those obstacles 
(Figure 2).

Figure 1. The original Turtlebot3 is stuck by the obstacles

The algorithm has been improved for a service boy job 
that are 1) decrease the distance betweeen goal and the 
robot position to 0.30 m. 2) cancel the orientation 
checking. Summarily, we have found that Deep Q 
Network can replace the ROS global and local planner. It 
has more performance and accuracy than the original 
planners. The key methods are how to design input states 
and reward logic of reinforcement learning.

Figure 2. Turtlebot3 with DQN can move away the obstacles and 
                head to goal.

II. RELATED WORKS
Deep Q Network is the state-of-art methodology of 

reinforcement learning developed by deepmind.com [9]. It 
can play Atari arcade game with frame captured of the 
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game RGB pixels.  It can play seven Atari games with no 
adjustment of the architecture or learning algorithm. They
have found that their reinforcement learning can perform 
surpassingly a human expert in three of them. 

Furthermore, Deep Q Network can be adopted in the 
robot functions, such as, path finding [3] or robot gripper 
[4]. Mihai Duguleana and Gheorghe Mogan have created 
deep neuron network to predict the robot trajectory by 
simulation in MATLAB [5]. M.A. Moussa use neuron 
network and reinforcement learning with the robot 
grasping behavior. It can learn to grasp arbitrarily shaped 
objects [4].

Yu Fan Chen, Miao Liu, Michael Everett, and 
Jonathan P. How have developed decentralized multi-
agent collision avoidance algorithm based on deep 
reinforcement learning [12]. The robot can predict the 
action based on its own velocity and others. So this 
algorithm cannot be applied in the real complex situation, 
because we cannot know all others velocity. Deep 
reinforcement learning can be used asynchronously for 
learning of robot navigation [8]. In that research they use 
with supervised auxiliary tasks.

Obviously, one technique of deep reinforcement 
learning that mostly used is learning from the old 
experience, like experience replay mechanism in [9] and 
transferring the relevant parts of the knowledge acquired 
as a result of previous experiences to improve the learning 
rate [1].

X. Zhuang has brought the concept of entropy to the 
reinforcement learning [11]. They have improved the 
learning performance with self-adaptive learning rate that 
based on the local strategy entropy.

There are various tools to make a simulation for DQN, 
such as, Gazebo [7], MATLAB [5], OpenAI Gym [10] [6]. 
Interestingly, pymunk is a Python library about Physics 
engine that can be used for Deep Q Network and 
reinforcement learning simulation. Especially, with 
graphical visualization from pygame. These tools are easy 
for coding in Python and can be simply adapted to the real 
robot.           Matt Harvey have used pymunk and pygame 
to make a simulation of the virtual RC car to move around 
his virtual apartment [2]. His simulation is clearly efficient 
for Deep Q Network reinforcement learning but the robot 
just randomly move around the room to avoid obstacles. 
We have extended that work to make the robot move to 
predefined goal in a map, meanwhile avoiding obstacles.

III. EXPERIMENT
We have created Deep Q Network to learn the 

optimized path finding of the robot by reinforcement 
learning principle. The expected environment is the room 
with obstacles. Deep neuron network is the main policy 
function, it acquires input states and predict the action 
from its activation function. Reward and Q value will be 
calculated to adapt their weights to receive the most Q 
value, by stochastic gradient descent. Summarily, the robot 
try to receive the most Q value. 

A. Learning stage
We have created the neuron network from Keras 

library on Theano. Physics engine Python library, pymunk,
was used in the pygame to set the simulation environment 
for our reinforcement learning (Figure 3).

Figure 3. Reinforcement learning simulation.

We have determined experimental parameters for 
reinforcement learning to achieve the most Q value by:

1. Number of neuron nodes
2. Number of neuron layers
3. Number of learning episodes
4. States input design
5. Reward patterns

We had evaluation metrics to consider the 
convergence of learning that are:

1. Behavior of the robot
2. Number of steps moving to goal (time taken)
3. Number of obstacles hits

The process in this stage has been repetitively 
performed until the learning is convergent. That is the 
robot can avoid obstacles and move to the goal.

B. Robot testing stage
In this stage we need to test the real robot. We have 

taken the neuron network to predict the action of the 
TurtleBot3 Burger. We have used slam_gmapping library 
of ROS to make the map by TurtleBot3 Burger. Then we 
have applied ROS amcl to get location of the robot but we 
have not used ROS move_base library, it was replaced by 
the DQN instead.

For service boy concept, the robot just move near the 
goal in 0.30 m. range and neglect the robot orientation. 
Python ROS node would be created to send the cmd_vel 
topic to the TurtleBot3 robot to control its movement.

Then the movement of TurtleBot3 has been tested, 
observed, evaluated (Figure 4). Sensors data have been 
acquired from Lidar (Laser Scan) of TurtleBot3. The 
adjustment in learning could be done to fine tune the 
learning for robot movement optimization.
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Figure 4. TurtleBot3 movement testing.

IV. RESULT

A. Learning stage
In learning stage we have found that all experimental 

parameters of reinforcement learning are inter-dependent. 
Only one parameter cannot determine the learning 
convergence. Table I. shows details of parameters that 
make the best results.

TABLE I. PARAMETERS TO MAKE LEARNING CONVERGENCE

Parameters Best value remark
Number of 
neuron nodes 128,128

Number of 
neuron layers 2 Layer1 = 128,

layer2 =128

Number of 
learning 
episodes

100,000

States input 
design

5 sensors data, distance between 
robot and goal, angle of the 

robot heading and straight line to 
goal

We use 
movable 
goal in 

learning

Reward pattern

5000 if reach goal, do + dg  + 10  
if action is going straight  and 
angle between robot  and goal < 
0.5 radian, do + dg   otherwise      

Learning 
technique

No obstacles if 1-50,000 
episodes, with obstacles in 
50,001 100,000 episodes.

The states of reinforcement learning are:
1) 5 sensors data that are distances of around 

obstacles
(Figure 5)

2) distance between robot and goal (Figure 6)
3) the angle of the robot heading and straight line to 

goal (Figure 7)

Described by:

St -2t -1t, 0t 1t 2t, dt t)

where

St = states input
-2t = distance data of sensor at -60 degree at time t
-1t = distance data of sensor at -30 degree at time t
0t = distance data of sensor at 0 degree at time t
1t = distance data of sensor at 30 degree at time t
2t = distance data of sensor at 60 degree at time t

dt  = distance of robot and goal at time t
t = angle of the robot heading and straight line to goal

at
       time t

The rewards of actions are calculated from these 
criteria:

1. 5000 if reach goal
2. If not reach goal

reward = do + dg  + 10 ; if action is going straight 
         and angle between robot 

                                               and goal < 0.5 radian
    Or:

reward = do + dg            ; otherwise

where
do = sum of distances of around five obstacles
dg = distance from robot to goal

The actions of neuron network are:
= f(St)

    = a         ; a { turn left, go straight, turn right }

In reinforcement learning, we use pygame to 
simulate the movement of robot. We can observe its 
behavior and readjust the learning parameter until the 
robot make optimized score.

Figure 5. Five sensors data.
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Figure 6. Distance between robot and goal.

Figure 7. Angle of the robot heading and straight line to 
               goal.

B. Testing stage
After learning stage we have tested the neuron 

network funcions by pygame and pymunk with fixed 
position of goal. The goal has been changed to the new 
position if the robot has reached the goal. The metrics of 
performance are number of frames (time) to reach goal and 
number of obstacles hits before goal reaching. Figure 8 
shows result graph of the testing.
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Figure 8. Result of Deep Q Network testing.

C. TurtleBot3 testing stage
For TurtleBot3 testing we have designed the variety of 

obstacles patterns that differ in position, size, and interval 
range between obstacles as described in figure 9. For 
TurtleBot3 we have modified the original algorithm for 
suitability of DQN. Figure 10 describes the flowchart of 
the new algorithm. 

We use ROS rviz program to send the goal command 
to the TurtleBot3 and DQN nodes will trigger its activation 
functions. Table II shows results of the testing.

Figure 9. Various patterns for TurtleBot3 testing.

Figure 10. Flowchart of new algorithm for DQN function in 
TurtleBot3.

TABLE II. TURTLEBOT3 TESTING RESULTS

Obstacle pattern number Average numbers of 
obstacles hit

Average time 
take to goal 

(sec.)

1 2 42

2 3 53

3 2 44

We have found that well learned Deep Q Network can
absolutely be applied in robot navigation. 

V. CONCLUSIONS
Robot navigation is the main composition of 

modern robot today. ROS Navigation Stack is now 
obviously impacting the robot field. But its path planners 
can perform only basic functions.

Deep Q Network can neatly replace the ROS path 
planner, by reinforcement learning simulation before 
adoption. In this paper has proposed how to use neuron 
network to learn the best actions of robot states by pymunk 
and pygame. Results show that by this methodology we 

Receive data from sensor

Is collide obstaclesCollide obstaclesReverse and turn

no

Send to DQN

DQN predict and send 
cmd_vel

Reach the goal

no

stop

yes

yes
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can take the Deep Q Network with reinforcement learning 
to make a noble robot navigation algorithm.

The important process is how to design the 
parameters that effect robot policy. We have found the 
useful tricks:

1) Learn with no obstacles in first half and with 
obstacles in second half.

2) Goal movement in learning stage can help          
convergence.

3) Design reward level for goal reaching, distance to 
goal, direction in straight direction and heading to  
goal, in descending order.

Finally, in adoption Deep Q Network for ROS robot,   
like TurtleBot3, can be done by using odometry, 
slam_gmapping, amcl and replace the planners with 
python node that implements well learned Deep Q 
Network predictions. The Deep Q Network can navigate 
the robot as it leant and performs action better than the 
orginal navfn and trajectory_planner.
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