
Service Boy Robot Path Planner by
Deep Q Network

Rawin Chaisittiporn

Department of Computer Science
Chandrakasem Rajabhat University

Bangokok, Thailand
rawin.ch@chandra.ac.th

ROS

pymunk Python

TurtleBot3

ROS slam_gmapping, amcl costmap

planner

ROS

: ,

Abstract This paper has studied how to use Deep Q
Network (DQN) with ROS for path planner of service boy
robot. We use pymunk library of Python for training the
neuron network to learn the best action for various input
states, by principle of reinforcement learning.
Additionally, we use pygame library for learning
simulation, observation and evaluation graphically. We
have designed input states, output actions, and hidden
layers of the neuron network. After training in predefined
episodes we use the neuron network to predict the action

of TurtleBot3 real robot. We use ROS for robot operation
and use ROS slam_gmapping, amcl, except costmap and
planners (both global and local planner). Instead, we use
well trained Deep Q Network to predict the action of the
robot. The result shows that well trained Deep Q Network
has more efficient than original ROS planners. It can
navigate to any place in the map and can reach the goal by
obstacle avoidance. Absolutely, it can move to any
destination in the map by orientation ignorance and
reduce the distance accuracy between destination and the
robot. Absolutely, it can suitably perform a role of service
boy, like in the restaurant.

Keywords-DQN, Reinforcement Learning; ROS
Navigation; Path planner; Service boy robot

International Journal of Applied Computer Technology and Information Systems: Volume 8, No.1, April 2018 - September 2018

50

Abstract This paper has studied how to use Deep Q Network
(DQN) with ROS for path planner of service boy robot. We use
pymunk library of Python for training the neuron network to
learn the best action for various input states, by principle of
reinforcement learning. Additionally, we use pygame library for
learning simulation, observation and evaluation graphically. We
have designed input states, output actions, and hidden layers of
the neuron network. After training in predefined episodes we use
the neuron network to predict the action of TurtleBot3 real
robot. We use ROS for robot operation and use ROS
slam_gmapping, amcl, except costmap and planners (both global
and local planner). Instead, we use well trained Deep Q Network
to predict the action of the robot. The result shows that well
trained Deep Q Network has more efficient than original ROS
planners. It can navigate to any place in the map and can reach
the goal by obstacle avoidance. Absolutely, it can move to any
destination in the map by orientation ignorance and reduce the
distance accuracy between destination and the robot. Absolutely,
it can suitably perform a role of service boy, like in the
restaurant.

Keywords DQN, Reinforcement Learning, ROS
Navigation,

 Path planner, Service boy robot

I. INTRODUCTION

Robot Operating System, ROS, is a notable software
for robot development and has a big community of robot
developers. ROS has many libraries and widely cover all
of domains about robot. One of outstanding features of
ROS is Navigation Stack that can make the robot navigate
to any places in a map it has known. ROS Navigation
Stack has many related libraries to work together, such as,
slam_gmapping, amcl, move_base, cost map, global
planner, base local planner.

Unfortunately, we have found that ROS global planner
and local planner cannot well perform in complicated
situation, like the narrow pathways, because of its
algorithm limitation by ROS costmap inflation.

In this paper, we have interested in how to adopt the
Deep Q Network with robot navigation on ROS. By
reinforcement learning, robot can learn how to interact
with any states and then take action. It learns by adapting

which is Q value. The pymunk and pygame Python
libraries have been used to simulate the learning. We can
visually observe the behavior of the robot machine
learning, testing, and evaluation.

We have designed and tested many factors of
reinforcement learning, such as, states formats for neuron
network input, hidden layers of neuron network, reward
criteria, learning process, number of learning episodes.

After many experiments we have found the
convergence of the neuron network, the virtual robot can
avoid the obstacles and reach the goal altogether. Then we
have taken this neuron network to predict the action of the
TurtleBot3 real robot in the room with various obstacles
patterns.

We have used some ROS Navigation libraries, they are
slam_gmapping, odometry, amcl but we have not used
costmap, move_base navigation. So we have replaced the
global planner and local planner of ROS with our neuron
network and have used it to predict the action of
TurtleBot3. The TurtleBot3 robot can move to any goal in
the map and can avoid the obstacles.

From our experiment of original ROS Navigation,
trajectory planner and navfn library can not find the path
when the environment has many narrow path obstacles
then stuck and stop the robot movement (Figure 1). While
the TurtleBot3 with DQN could avoid those obstacles
(Figure 2).

Figure 1. The original Turtlebot3 is stuck by the obstacles

The algorithm has been improved for a service boy job
that are 1) decrease the distance betweeen goal and the
robot position to 0.30 m. 2) cancel the orientation
checking. Summarily, we have found that Deep Q
Network can replace the ROS global and local planner. It
has more performance and accuracy than the original
planners. The key methods are how to design input states
and reward logic of reinforcement learning.

Figure 2. Turtlebot3 with DQN can move away the obstacles and
 head to goal.

II. RELATED WORKS
Deep Q Network is the state-of-art methodology of

reinforcement learning developed by deepmind.com [9]. It
can play Atari arcade game with frame captured of the

International Journal of Applied Computer Technology and Information Systems: Volume 8, No.1, April 2018 - September 2018

51

game RGB pixels. It can play seven Atari games with no
adjustment of the architecture or learning algorithm. They
have found that their reinforcement learning can perform
surpassingly a human expert in three of them.

Furthermore, Deep Q Network can be adopted in the
robot functions, such as, path finding [3] or robot gripper
[4]. Mihai Duguleana and Gheorghe Mogan have created
deep neuron network to predict the robot trajectory by
simulation in MATLAB [5]. M.A. Moussa use neuron
network and reinforcement learning with the robot
grasping behavior. It can learn to grasp arbitrarily shaped
objects [4].

Yu Fan Chen, Miao Liu, Michael Everett, and
Jonathan P. How have developed decentralized multi-
agent collision avoidance algorithm based on deep
reinforcement learning [12]. The robot can predict the
action based on its own velocity and others. So this
algorithm cannot be applied in the real complex situation,
because we cannot know all others velocity. Deep
reinforcement learning can be used asynchronously for
learning of robot navigation [8]. In that research they use
with supervised auxiliary tasks.

Obviously, one technique of deep reinforcement
learning that mostly used is learning from the old
experience, like experience replay mechanism in [9] and
transferring the relevant parts of the knowledge acquired
as a result of previous experiences to improve the learning
rate [1].

X. Zhuang has brought the concept of entropy to the
reinforcement learning [11]. They have improved the
learning performance with self-adaptive learning rate that
based on the local strategy entropy.

There are various tools to make a simulation for DQN,
such as, Gazebo [7], MATLAB [5], OpenAI Gym [10] [6].
Interestingly, pymunk is a Python library about Physics
engine that can be used for Deep Q Network and
reinforcement learning simulation. Especially, with
graphical visualization from pygame. These tools are easy
for coding in Python and can be simply adapted to the real
robot. Matt Harvey have used pymunk and pygame
to make a simulation of the virtual RC car to move around
his virtual apartment [2]. His simulation is clearly efficient
for Deep Q Network reinforcement learning but the robot
just randomly move around the room to avoid obstacles.
We have extended that work to make the robot move to
predefined goal in a map, meanwhile avoiding obstacles.

III. EXPERIMENT
We have created Deep Q Network to learn the

optimized path finding of the robot by reinforcement
learning principle. The expected environment is the room
with obstacles. Deep neuron network is the main policy
function, it acquires input states and predict the action
from its activation function. Reward and Q value will be
calculated to adapt their weights to receive the most Q
value, by stochastic gradient descent. Summarily, the robot
try to receive the most Q value.

A. Learning stage
We have created the neuron network from Keras

library on Theano. Physics engine Python library, pymunk,
was used in the pygame to set the simulation environment
for our reinforcement learning (Figure 3).

Figure 3. Reinforcement learning simulation.

We have determined experimental parameters for
reinforcement learning to achieve the most Q value by:

1. Number of neuron nodes
2. Number of neuron layers
3. Number of learning episodes
4. States input design
5. Reward patterns

We had evaluation metrics to consider the
convergence of learning that are:

1. Behavior of the robot
2. Number of steps moving to goal (time taken)
3. Number of obstacles hits

The process in this stage has been repetitively
performed until the learning is convergent. That is the
robot can avoid obstacles and move to the goal.

B. Robot testing stage
In this stage we need to test the real robot. We have

taken the neuron network to predict the action of the
TurtleBot3 Burger. We have used slam_gmapping library
of ROS to make the map by TurtleBot3 Burger. Then we
have applied ROS amcl to get location of the robot but we
have not used ROS move_base library, it was replaced by
the DQN instead.

For service boy concept, the robot just move near the
goal in 0.30 m. range and neglect the robot orientation.
Python ROS node would be created to send the cmd_vel
topic to the TurtleBot3 robot to control its movement.

Then the movement of TurtleBot3 has been tested,
observed, evaluated (Figure 4). Sensors data have been
acquired from Lidar (Laser Scan) of TurtleBot3. The
adjustment in learning could be done to fine tune the
learning for robot movement optimization.

International Journal of Applied Computer Technology and Information Systems: Volume 8, No.1, April 2018 - September 2018

52

Figure 4. TurtleBot3 movement testing.

IV. RESULT

A. Learning stage
In learning stage we have found that all experimental

parameters of reinforcement learning are inter-dependent.
Only one parameter cannot determine the learning
convergence. Table I. shows details of parameters that
make the best results.

TABLE I. PARAMETERS TO MAKE LEARNING CONVERGENCE

Parameters Best value remark
Number of
neuron nodes 128,128

Number of
neuron layers 2 Layer1 = 128,

layer2 =128

Number of
learning
episodes

100,000

States input
design

5 sensors data, distance between
robot and goal, angle of the

robot heading and straight line to
goal

We use
movable
goal in

learning

Reward pattern

5000 if reach goal, do + dg + 10
if action is going straight and
angle between robot and goal <
0.5 radian, do + dg otherwise

Learning
technique

No obstacles if 1-50,000
episodes, with obstacles in
50,001 100,000 episodes.

The states of reinforcement learning are:
1) 5 sensors data that are distances of around

obstacles
(Figure 5)

2) distance between robot and goal (Figure 6)
3) the angle of the robot heading and straight line to

goal (Figure 7)

Described by:

St -2t -1t, 0t 1t 2t, dt t)

where

St = states input
-2t = distance data of sensor at -60 degree at time t
-1t = distance data of sensor at -30 degree at time t
0t = distance data of sensor at 0 degree at time t
1t = distance data of sensor at 30 degree at time t
2t = distance data of sensor at 60 degree at time t

dt = distance of robot and goal at time t
t = angle of the robot heading and straight line to goal

at
 time t

The rewards of actions are calculated from these
criteria:

1. 5000 if reach goal
2. If not reach goal

reward = do + dg + 10 ; if action is going straight
 and angle between robot

 and goal < 0.5 radian
 Or:

reward = do + dg ; otherwise

where
do = sum of distances of around five obstacles
dg = distance from robot to goal

The actions of neuron network are:
= f(St)

 = a ; a { turn left, go straight, turn right }

In reinforcement learning, we use pygame to
simulate the movement of robot. We can observe its
behavior and readjust the learning parameter until the
robot make optimized score.

Figure 5. Five sensors data.

International Journal of Applied Computer Technology and Information Systems: Volume 8, No.1, April 2018 - September 2018

53

Figure 6. Distance between robot and goal.

Figure 7. Angle of the robot heading and straight line to
 goal.

B. Testing stage
After learning stage we have tested the neuron

network funcions by pygame and pymunk with fixed
position of goal. The goal has been changed to the new
position if the robot has reached the goal. The metrics of
performance are number of frames (time) to reach goal and
number of obstacles hits before goal reaching. Figure 8
shows result graph of the testing.

0

20

40

60

80

100

testing
time

number of
frames
number of
hits

Figure 8. Result of Deep Q Network testing.

C. TurtleBot3 testing stage
For TurtleBot3 testing we have designed the variety of

obstacles patterns that differ in position, size, and interval
range between obstacles as described in figure 9. For
TurtleBot3 we have modified the original algorithm for
suitability of DQN. Figure 10 describes the flowchart of
the new algorithm.

We use ROS rviz program to send the goal command
to the TurtleBot3 and DQN nodes will trigger its activation
functions. Table II shows results of the testing.

Figure 9. Various patterns for TurtleBot3 testing.

Figure 10. Flowchart of new algorithm for DQN function in
TurtleBot3.

TABLE II. TURTLEBOT3 TESTING RESULTS

Obstacle pattern number Average numbers of
obstacles hit

Average time
take to goal

(sec.)

1 2 42

2 3 53

3 2 44

We have found that well learned Deep Q Network can
absolutely be applied in robot navigation.

V. CONCLUSIONS
Robot navigation is the main composition of

modern robot today. ROS Navigation Stack is now
obviously impacting the robot field. But its path planners
can perform only basic functions.

Deep Q Network can neatly replace the ROS path
planner, by reinforcement learning simulation before
adoption. In this paper has proposed how to use neuron
network to learn the best actions of robot states by pymunk
and pygame. Results show that by this methodology we

Receive data from sensor

Is collide obstaclesCollide obstaclesReverse and turn

no

Send to DQN

DQN predict and send
cmd_vel

Reach the goal

no

stop

yes

yes

International Journal of Applied Computer Technology and Information Systems: Volume 8, No.1, April 2018 - September 2018

54

can take the Deep Q Network with reinforcement learning
to make a noble robot navigation algorithm.

The important process is how to design the
parameters that effect robot policy. We have found the
useful tricks:

1) Learn with no obstacles in first half and with
obstacles in second half.

2) Goal movement in learning stage can help
convergence.

3) Design reward level for goal reaching, distance to
goal, direction in straight direction and heading to
goal, in descending order.

Finally, in adoption Deep Q Network for ROS robot,
like TurtleBot3, can be done by using odometry,
slam_gmapping, amcl and replace the planners with
python node that implements well learned Deep Q
Network predictions. The Deep Q Network can navigate
the robot as it leant and performs action better than the
orginal navfn and trajectory_planner.

REFERENCES

[1]
Learning by transfering sub-goal policies in robot navigation,"
2013 21st Signal Processing and Communications Applications
Conference (SIU), Haspolat, 2013, pp. 1-4.

[2] H. Matt, "Using reinforcement learning in Python to teach a virtual
car to avoid obstacles", Retrieved from http://blog.coast.ai/using-
reinforcement-learning-in-python-to-teach-a-virtual-car-to-avoid-
obstacles-6e782cc7d4c6, (2018, July 20).

[3] K. Nikaido and K. Kurashige, "Self-Generation of Reward by
Sensor Input in Reinforcement Learning," 2013 Second
International Conference on Robot, Vision and Signal Processing,
Kitakyushu, 2013, pp. 270-273.

[4] M. A. Moussa, "Combining expert neural networks using
reinforcement feedback for learning primitive grasping behavior,"
in IEEE Transactions on Neural Networks, vol. 15, no. 3, pp. 629-
638, May 2004.

[5] M. Duguleana and G. Mo

Expert Syst. Appl., vol. 62, pp. 104 115, 2016.
[6]

abs/1704.05539, 2017.
[7] T. Lei and L. Ming, "A robot exploration strategy based on Q-

learning network," 2016 IEEE International Conference on Real-
time Computing and Robotics (RCAR), Angkor Wat, 2016, pp. 57-
62.

[8] T. Tongloy, S. Chuwongin, K. Jaksukam, C. Chousangsuntorn and
S. Boonsang, "Asynchronous deep reinforcement learning for the
mobile robot navigation with supervised auxiliary tasks," 2017 2nd
International Conference on Robotics and Automation Engineering
(ICRAE), Shanghai, 2017, pp. 68-72.

[9] V. Mnih et a
arXiv preprint arXiv:1312.5602, 2013.

[10] -
aware Sampling for Deep Q-
abs/1804.08619, 2018.

[11] X. Zhuang, "The Strategy Entropy of Reinforcement Learning for
Mobile Robot Navigation in Complex Environments," Proceedings

of the 2005 IEEE International Conference on Robotics and
Automation, Barcelona, Spain, 2005, pp. 1742-1747.

[12] ntralized
non-communicating multiagent collision avoidance with deep

ICRA, 2017, pp. 285 292.

International Journal of Applied Computer Technology and Information Systems: Volume 8, No.1, April 2018 - September 2018

55

