
International Journal of Applied Computer Technology and Information Systems: Volume 9, No.1, April 2019 - September 2019

1

How to Implement Cross-Origin Resource Sharing on CherryPy Platform of Python

Wasun Khan-Am1

1dept. of Information Systems

Faculty of Business Administration, RMUTT

Phatum Thani, Thailand

e-mail: wasun_k@rmutt.ac.th

Abstract— This article presents how to implement

Cross-Origin Resource Sharing, aka CORS, on CherryPy
platform of Python. This experiment is under the concept
of RESTful. The tools of this experiment are python 3,
CherryPy Framework version 18, SQLite 3,
USBWebserver version 8.0, JQuery version 1.12, AJAX
approach, and use Mozilla Firefox as a web browser. The
hardware tool is a laptop computer. Four methods of
HTTP methods, namely GET, POST, PUT, and DELETE;
based on the concept of RESTful. Those methods were
built on CherryPy platform before being tested in the next
order. There are three outputs of this experiment that has
been shown in this article. Firstly, the RESTful concept
has been able to apply by using a Python 3 on CherryPy
platform. Secondly, two methods, such as GET and POST,
have been able to directly implement under CORS concept
with a simple request. Thirdly, the rest method, PUT and
DELETE, have been able to apply under CORS concept
by using a preflight request.

Keywords: Cross-Origin Resource Sharing; WebAPI;

RESTful; CherryPY; CORS

I. INTRODUCTION

Nowadays, Web is very famous, well-known and
dispread around the world, there are several kinds of
websites and several kinds of application relevance web.
One kind to classify web application is use or non-use web
server, then if the application uses a web server, it is called
application on the web. If the application doesn’t need a
web server, it is called a web application.

According to the previous paragraph, web application
and WebAPI is the most popular approach to implement
web. There is a lot of programmer switch to a Web
application, using languages such as nodejs, python, and
Ruby. Some of them change themselves to create
WebAPI. A WebAPI [1] is an application programming
interface that provides a function to execute for the web
server, web browser, application on the web, and web
application. The well-known WebAPI is a RESTful
WebAPI, this is a way for accessing a web-resources over
the Internet [2].

The python language is one of popular language in the
world, created by Guido van Rossum in 1991[3]. It is ease
of use; its learning curve is low. It can use for creating a

standalone application, both of text and window
application; application for web, an application which runs
on the web server; web application, an application as a

web and running without the web server.
There is a lot of method and framework to create a web

application in python. The easy one is using CherryPy [4]
framework which declared itself as a minimalist python
web framework. In addition, The CherryPy is a pythonic,
object-oriented web framework that enables python
programmers to create web applications as a similar way
as they created the object-oriented Python program.
Working with CherryPy Framework, a programmer will
get a great result by using the smaller source code and less
time.

The Representational State Transfer, in short REST
[5], is a software architectural style which defines a new
standard for creating web service that was developed by
Roy Fielding. The web services implement REST
architectural is called RESTful Web services or RWS an
as known as a RESTful. The core concept of RESTful is to
create a standard method of interoperability between
server and client computers on the Internet by using
common HTTP methods. A web programmer will be able
to access web resources on the internet with four standard
methods [6]. The four resource method was used to
perform the desired transition are:

 GET for retrieving some information such as

read one user or many users.

 POST for creating new information unit such as

create one user.

 PUT for update some information such as update

user information.

 DELETE for delete the information unit such as

delete one user.

Notice that, the main concept of RESTful is involved
with the way to manipulate an information unit such as
create, read, update, and delete information that was stored
in the database. Therefore, the application that
implemented RESTful need to had a database to operate
also.

SQLite [7] is a database including very small, great
powerful, free of charge, SQL embedded, famous, and

International Journal of Applied Computer Technology and Information Systems: Volume 9, No.1, April 2019 - September 2019

2

easy to use. It is quite pretty good for use in a small and
non-complicated project. It also is very suitable for use in
test projects such as this experiment.

Cross-Origin Resource Sharing [8, 9], in short CORS,
is a mechanism for working in crossing domain for web
browsers, additional HTTP Header that let browser
running an application at one origin (domain) have
permission to access targeted resources from other servers
at a different origin (different domain, protocol, and port)
than its own origin. The word ‘Crossing Domain’ or
‘cross-origin’ was including any kind of host connection
such as changing port with the same host, changing host in
sending a request. The CORS was developed by World
Wide Web (WWW) consortium [9] for web security
reason.

The user agent processing model [9] has been
described with two major algorithms such as a simple
cross-origin request and a cross-origin request with
preflight. The generic cross-origin request algorithm
defined as fetch the request URL from origin source origin
using referrer source as override referrer source with the
manual redirect flag set, and the block cookies flag set if
the omit credentials flag is set. Use method request
method, entity body request entity body, including the
author request headers and include user credentials if the
omit credentials flag is unset. [9]

Figure 1. Simple Request.

Adapted from [8]

Figure 2. Preflight Request.

Adapted from [8]

The simple request [8] is the one that meets the method
including GET, HEAD, and POST. The diagram of the
simple request shown in figure 1.

The preflight request [8] is starting by sending an
HTTP request with OPTIONS method to the resource on
the other source, in order to determine whether the actual
request is safe for sending. This diagram were presented in
figure 2

In recent years, AJAX [10, 11], stand for
Asynchronous JavaScript And XML, is a very popular
approach that is implemented in client-site. The core
benefit of AJAX is to make a request to the server without
reloading the page. The term AJAX was coined by Jesse
James Garrett [10], which is use a number of existing
technologies together including: HTML, XHTML, CSS,
JavaScript, DOM, XML, XSLT and the most important is
the XMLHttpRequest Object. The shorten-pathway for
implementing AJAX is using a JQuery [12]. JQuery is a
JavaScript Library that provided a lot of functions to
utilize programming in JavaScript Language.

According to the previous paragraph, this article set up
an experiment for finding out how to implement Cross-
Origin Resources Sharing on CherryPy framework of
Python in a lot of causes such as how to create RESTful
method and how to configure a CherryPy; and shows the
result of an experiment by using web console of Mozilla
Firefox.

II. EXPERIMENT DESIGN

The procedure of this experiment consists of eight
steps as following.

Step 1) Design table to store user data named userinfo.
Step 2) applies CherryPy tutorial 9 entitle “Data is all

my life”, to create source code with RESTful API
including GET, POST, PUT and DELETE.

Step 3) create an index.html file with AJAX to apply
HTTP RESTful.

Step 4) testing the program using the Mozilla Firefox
web browser as a tool until it runs correctly.

Step 5) move an HTML file from CherryPy framework
to root directory of USBWebserver

Step 6) test the new HTML file for calling RESTful
API in step 3.

Step 7) if any problem, debug them and retest step 6
again until no problem occurrence.

Step 8) Document and create a report.

III. RESULT

The results of this experiment are divided into four
parts: the design of the data table, server programming,
client programming, and program test results

A. Table Design

In programming, table userinfo was used for
developing the application of the RESTful method. The
result of table userinfo design shows as:

International Journal of Applied Computer Technology and Information Systems: Volume 9, No.1, April 2019 - September 2019

3

TABLE I. USERINFO SCHEME

Column Name Data type Size Note

User_name TEXT 20 PK

Pass_word TEXT 20

Full_name TEXT 50

Level INTEGER

Table I shows the design of the table named ‘userinfo’

that consists of four columns including User_name,
Pass_word, Full_name, and Level. The data types of each
column are TEXT, TEXT, TEXT, and INTEGER
respectively.

B. WebAPI programming

In this experiment, there are four methods was created
with the CherryPy framework: GET, POST, PUT, and
DELETE. The details of each method are shown as
follows.

POST Method

The POST method was worked by taking all data from

the user and inserts them into the table.

PUT Method

The PUT method work as takes all data from the user

then use SQL update command for updating the table with
the matched given a username.

GET Method

The GET method was created to carry out two major
works. The first issue is to display all the data from the
table. Another issue is to receive one parameter as a user
name, the primary key of the table, and use that
information to search the matching row in the table. Then
send search results back to users.

DELETE Method

The DELETE method starting from takes a username

that user wants to delete. Then delete the rows that match
given a username.

OPTIONS Method

The OPTION method in CherryPy is an extra-method

that use to response the HTTP request with the OPTIONS
method for the preflight request. The objective of this
method is to send an allow method to the client.

The next code is the configuration of /user in

CherryPy.

The previous configured code shown how a server is

controlled for incoming requests such as the allowed
domains, the accepted methods, and the accepted header.
All controlled data will be sent to the client with the
following header include control-allow-origin, control-
allow-method, and control-allow-header. The meanings of
the controlled data as shown in the above configuration
code are: the server accepts a request from all domain (*),
there are six methods allow including DELETE, GET,
HEAD, OPTIONS, POST, and PUT; there are four
headers allow including crossdomain, withcredentials,
Content-Type, id.

International Journal of Applied Computer Technology and Information Systems: Volume 9, No.1, April 2019 - September 2019

4

C. Client Programming

For simple request, the client programing was
developed by using ajax approach. The part of program
shows in the next paragraph.

In previous code, the code implements ajax() function

of jQuery with four parameters including url with
http://localhost:8080/user value , type with get value,
crossDomain with true value, and running function for
beforeSend parameter.

For preflight request, the client program was created
by using ajax approach also. This program part show in
next paragraph.

Due to preflight request programming, the server needs

to be contacted twice, the first for the OPTIONS request,
and the second for the PUTS request. Programming has
changed to use. XMLHttpRequest object instead.

D. CORS Tesing

The CORS test operates in two type of request: a
simple request testing, including GET and POST methods,
and a preflight request testing for the PUT and DELETE
methods. The result of simple request testing showed in
next figure.

Figure 3. Monitor of Simple Request.

Figure 3 shows that the user agent sends the GET
method to a different origin of the current webpage,
localhost with port 8080 that is a default port for
CherryPy, then gets the response back with status 200, OK
status. The request header that was sent by XHR shows in
the next figure.

Figure 4. Request Header that was sent by XHR

Figure 4 shows that the detail of the request header are:
the URL is http://localhost:8080/user?un=user-0, the
method is GET, and the version of HTTP is HTTP/1.1.
And the request was sent by XHR.The response header
corresponded with this request showed in the next figure.

Figure 5. Response header corresponed to simple request.

The response header shown in Figure 5 provides
information about the allowed rule of the server. In figure
about, server accessing is allowed from every domain (*),
the DELETE, GET, HEAD, OPTIONS, POST, and PUT
are allowed to use, and the request header including
crossdomain, withcredentials, Content-Type, and id are
allowed and accepted.

In preflight request testing, the request with the PUT
method was selected as an instance of the test. The test
output is presented in the next figure.

Figure 6. Monitor of Preflight Request.

In figure 6, the user agent sent a request with
OPTIONS and PUT method to a different origin of the
current webpage then the server sent the response back to
a user agent with header contents status 200 or OK status.

The XHR header of request with OPTIONS method
showed in next figure.

International Journal of Applied Computer Technology and Information Systems: Volume 9, No.1, April 2019 - September 2019

5

Figure 7. OPTIONS request header.

The request header with OPTIONS method that
composes with URL, method, address, version and status
code. After the server receives a request, the response is
sent back to a user agent with the following header.

Figure 8. OPTIONS response header.

When the user agent received a response with status
OK back from the server, the user agent must check an
allowed domain list first. if the current domain is not in the
list, the user agent must stop sending any request to the
server and raise an error. after domain validation, the
method list validation was conducted. By verification
allowed method list, if found that no PUT method in that
list then the user agent stops sending a request to the server
and raises an error. In other cases, the user agent must send
the request with the PUT method to the server to
continuous preflight test. consequently, the request header
with the PUT method is shown in the next figure.

Figure 9. XHR header of PUT Request.

Figure 9 shows the request by the PUT method sent by
XHR. Next figure shows some part of response header that
corresponded with the request with PUT method

Figure 10. PUT response header.

The response header of request with PUT method
looks similar like a response header of request with
OPTIONS method that provides any information about all
allowed rule of the server.

IV. SUMMARY AND DISCUSSION

The result of this experiment reveals the connection
between client and server during CORS working. The
simple request and preflight have been applied in each
case depend on the HTTP method. The key of work is
response header which should be allowed the target client
from other domain accessing resources under server. The
security of connecting is necessary also, the server should
have a strong policy such that from where? and which
resources? need to be secured. The client can apply ajax()
function of jQuery for simple request, But it can’t apply
for preflight request. the XMLHttpObject was prefer for
preflight request.

Although all four main HTTP method was applied in
this experiment, I found that firstly, code implementation
in client side is limit with ajax() function of jQuery, code
implementation by using XMLHttpdRequest object is a
best choice and secondly, the form of WebAPI in this
experiment is not a full pattern of RESTful. The
implementation of RESTful in this research is limit like a
tutorial of CherryPy [4]. Then, I recommend that in future
research should apply URL friendly in next experiment.

REFERENCES

[1] Kingleo713, MDN Web docs “Web APIs”, Feb 28, 2019

Avialable: https://developer.mozilla.org/en-US/docs/Web/API,
[Online] [Accessed: Mar. 3, 2019]

[2] Wikipedia, ‘Web API’, Feb. 28, 2019, Avialable:
https://en.wikipedia.org/wiki/Web_API [Online][Accessed: Mar.
3, 2019]

[3] Python Software Foundation, Python 3.7.3 documentation,
Aviable: https://docs.python.org/3/ [Online] [Accessed : Mar 3,
2019.

[4] CherryPy Team. CherryPy “CherryPy – A Minimalist Python Web
Framework”, 2019. Available: https://docs.cherrypy.org/en/latest/
[Online] [Accessed: Mar.3, 2019]

[5] D. Booth H. Haas, F. McCane, E. NewCommer, M. Champion, C.
Ferris, D. Orchard “Web Services Architecture” World Wide Web
Consortium, 11 Feb. 2004, Available:
https://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/#relwwwrest [Online] [Accessed: Mar. 3, 2019]

https://developer.mozilla.org/en-US/docs/Web/API
https://en.wikipedia.org/wiki/Web_API
https://docs.python.org/3/
https://docs.cherrypy.org/en/latest/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest

International Journal of Applied Computer Technology and Information Systems: Volume 9, No.1, April 2019 - September 2019

6

[6] R. Fielding, and J. Reschke, RFC7231 Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. Internet Engineering Task
Force, June 2014.

[7] SQLite, ‘SQLite Document’. Available:
https://www.sqlite.org/docs.html. [Online][Accessed: Mar 23,
2019]

[8] sideshowbarker, ‘MDN Web Docs, Cross-Origin Resource Sharing
(CORS) – HTTP | MDN’, Apr 12, 2019, 5:31:26 PM. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS.
[Online][Accessed: Mar 3, 2019]

[9] A. V. Kesteren, ‘World Wide Web Consortium Cross-Origin
Resource Sharing’, Jan 16, 2014. Available:
https://www.w3.org/TR/cors/. [Online] [Accessed: Mar 3, 2019]

[10] Mdnwebdocs-bot. ‘Ajax – Developer guides | MDN’, Mar 23,
2019. Available: https://developer.mozilla.org/en-
US/docs/Web/Guide/AJAX [Online] [Accessed: Apr 10, 2019]

[11] Mdnwebdocs-bot, ‘Getting Started –Developer guide’, Mar 18,
2019. Available: https://developer.mozilla.org/en-
US/docs/Web/Guide/AJAX/Getting_Started [Online] [Accessed:
Apr 10, 2019]

[12] JS fundation. ‘JQuery API Document’, 2019. Available:
https://api.jquery.com/ [Online] [Accessed: May 20, 2019]

https://www.sqlite.org/docs.html
https://developer.mozilla.org/en-US/profiles/sideshowbarker
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://www.w3.org/TR/cors/
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX/Getting_Started
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX/Getting_Started

