
Care Planning Through
Auction-based Information Negotiation (CAPTAIN):

The Ordering of Events in Service Negotiation

Pongpan Pinto
Department of Computer and Information Technology

Faculty of Science, Thaksin University
Phatthalung, Thailand
ppongpan@tsu.ac.th

Abstract—The Software as a Service (SaaS) model is a service-
based model in which a desired service is assembled, delivered
and consume on demand. A ‘proof of concept’ of SaaS is
Information Broker for Heterogeneous Information Sources
(IBHIS) which is based on services that deliver data. IBHIS is a
fully service-based approach to support the trustworthy
integration of heterogeneous forms of information possessed and
manipulated by autonomous service providers. Consequently,
Care Planning Through Auction-based Information Negotiation
(CAPTAIN) is developed to extend the concepts and role of the
broker as used in IBHIS. In particular, CAPTAIN also extends
the concepts and role of the service negotiation function to
demonstrate a full range of service characteristics: description,
discovery, composition, negotiation and delivery.

A service-oriented broker architecture for CAPTAIN has been
developed based on a case study within healthcare context. It
includes a negotiation model developed for the service negotiation
to deals with the needs of a client and the constraints of service
providers within planning service oriented circumstances. A
‘proof of concept’ of CAPTAIN is demonstrated as a service-
oriented planning broker system that is flexible, adaptable and
platform independent. The CAPTAIN system is a distributed
system consisting of several different system components which
are spatially separated. Hence, this paper will present the
investigation of the system behaviour by observing a partial
ordering of the events in the CAPTAIN system. The events occur
when there are the execution of a subprogram or interactions
among the system components. The correct ordering of the events
can ensure that the system components are accurately regulated
by the negotiation process and protocol. The timestamp of a
sequence of events is recorded by using an event logger. The
results of our study show that all system components of
CAPTAIN can perform their tasks and interact with each other
correctly during service negotiation between the planning broker
and the service providers. The system components exchange their
messages by sending and receiving among them, following the
process of service negotiation serial. As a result, the CAPTAIN
system can provide planning services properly to produce the
integrated care plan for the client.

Keywords-component; Software as a Service; IBHIS;
CAPTAIN; Web Services

I. INTRODUCTION

The conventional development of software has focused on
supply-side issues, driven by developers or technology rather
than end users. [3] In addition, software developed and
delivered as a product is not adaptable to the new era of rapidly
changing business needs. Moreover, the internet has been
progressively used as a disruptive platform for new various
types of business model. [8] As a result, the software industry
as established by software vendors has begun to move from
software products to more profitable software services for the
end users. [7] To deal with new demands of the end users,
software can be delivered as a service, focusing on the rapid
changing needs of the end users or service consumers. [12][4].
Therefore, the “service-oriented” approach leads to the benefit
of the independent from particular software programming
languages or operating systems. [9] This approach allows
software to be composed by discovering and invoking a set of
services through a network of services. Hence, business
services can be exposed and offered to facilitate demand from
other service software or consumers. Therefore, a service-
oriented model of software can be used to develop software
providing a software service that is consumed on demand and
may be discarded later by the end users. [3][1][6]

The Software as a Service (SaaS) is a service-based model.
It is based on a demand-led concept in which a desired service
is assembled, delivered and consumed on demand. By using the
SaaS model, end-user services are composed out of smaller
ones (and so on recursively), procured and paid for on demand.
Users can generate, compose and assemble a service by
gathering services from a number of service suppliers in order
to achieve their needs at a specific point in time. The SaaS
model consists of three layers: service description, service
integration and service transport. The service integration layer
comprises five main service functions: description, discovery,
negotiation, delivery and composition.

The Care Planning Through Auction-based
Information Negotiation (CAPTAIN) system is a service-
oriented software providing healthcare planning broker services

International Journal of Applied Computer Technology and Information Systems: Volume 2, No.2, October2012 - March 2013

7

for the user. The architecture of CAPTAIN has been derived
from Information Broker for Heterogeneous Sources (IBHIS)
and developed based on the SaaS model. The CAPTAIN
system is a distributed system consisting of many diverse
system components which are spatially separated. The
distributed CAPTAIN system is needed to be observed the
ordering of events. Therefore, this paper will present the
investigation of a partial ordering of the events occurring when
there are the executions of a subprogram or interactions among
the system components. The correct ordering of the events can
ensure that all system components are accurately regulated by
the negotiation process and protocol. As a result, the
CAPTAIN system can perform correctly to produce the result
for a client.

The remainder of this paper is structured as follows.
Section 2 and 3 introduce the background of the IBHIS and
CAPTAIN respectively. Section 4 describes the theory related
to the ordering of events in distributed systems that is used for
the investigation of the CAPTAIN system’s behavior. Section 5
and 6 presents the research method and, then, the result and
discussion of this paper respectively. Finally, section 7 presents
some conclusions and orientations for future work.

II. INFORMATION BROKER FOR HETEROGENEOUS SOURCES
(IBHIS)

The IBHIS broker is the demonstration as ‘A proof of
concept’ of the overall set of SaaS concepts in a form that was
based on services that deliver data. [3][4] IBHIS explored a
fully service-based approach to large-scale healthcare data
integration, gathering information from distributed,
heterogeneous and autonomous data sources.

The IBHIS system has applied the concept of the broker to
the use of electronic healthcare records in several aspects, such
as finding the appropriate sources and representing the end
user’s requirements. The IBHIS broker acts as a trusted
intermediary gathering, protecting and aggregating information
from electronic sources retained in different distributed
agencies.

Figure 1 The System Architecture of IBHIS

Figure 1 presents the IBHIS architecture that consists of
basic services used in two forms: statically-bound service and
dynamically-bound service.

� The statically-bound services are the set of services
that are employed within the information broker to
provide functional tasks, such as user interface, user
authorization services and query formulation.

� The dynamically-bound services are the set of services,
termed as Data as a Service (DaaS). The DaaS is a
service supplying information, used where the set of
related information sources is usually regulated
dynamically. According to a query specified by a client
or an end user, the information broker can dynamically
locates and accesses distributed data sources, provides
as data services, selecting these according to the
information that they can provide.

The dynamically-bound services, needed to perform a
task, are determined, located and bound at the time of
execution. The concept of a Data Access Service
(DAS) is used to form an interface between the
‘physical’ structure of the data sources, and the broker
itself.

The IBHIS system performs by supplying information
services to meet the needs of the end users. It delivers
integrated data that are gathered from distributed,
heterogeneous and autonomous data sources. It focused on the
needs of healthcare information, particularly health and social
care, and demonstrated how data sources as well as their data
could be integrated while also being held and managed by
disparate and autonomous healthcare agencies or providers.
Within the structure of UK health and social care, this could
provide an organisation changing context which could then be
used by various end users for diverse purposes.

III. CARE PLANNING THROUGH AUCTION-BASED
INFORMATION NEGOTIATION (CAPTAIN)

A. The Architecture of CAPTAIN
The architecture of CAPTAIN has been derived from

IBHIS. Figure 2 presents its architecture that is composed from
four major service components: the planning broker (P-
Broker), the information broker (I-Broker), data access services
(DASs) and semantic registry. The P-Broker and the I-Broker
are statically-bound services while the DASs are dynamically
bound services.

� The DASs are a set of heterogeneous, autonomous and
distributed data sources owned by several healthcare
service providers. The DASs supply healthcare
information related to the integrated care plan, for
instance service description and healthcare
professionals, to the I-Broker.

International Journal of Applied Computer Technology and Information Systems: Volume 2, No.2, October2012 - March 2013

8

Figure 2 The System Architecture of CAPTAIN

� The I-Broker performs as an information mediator
between the P-Broker and the DASs. Both of them
exchange messages via the I-Broker so that they do
not have to know detailed information about each
other, such as message format and locations.
According to the request or interests of the P-Broker,
the I-Broker takes action on behalf of the P-Broker
to gather information from the DASs. Then, the I-
Broker blends the information from the DASs into
the composite form defined by the P-Broker. Finally,
the I-Broker returns the result to the P-Broker.

� The P-Broker provides a care planning service by
producing the integrated care plan according to the
needs of the end user or client. The P-Broker uses
data and information supplied by the DASs via the I-
Broker, together with by its planning knowledge
repository called “domain knowledge”. The P-Broker
employs a “Planning service” to generate the
integrated care plan for the end user. The “Planning
service” consists of two main services: “Care plan
formulation service” and “Care plan implementation
service”.

o The “Care plan formulation service” is used to
analyse the end user’s request and, then,
formulate the requests or queries for the I-
Broker.

o The “Care plan implementation service” uses
the requests from the “Care plan formulation
service” to gather and analyse the information
from the DASs, via the I-Broker, in order to
create the integrated care plan for the end user.

� The semantic registry contains information about the
DASs’ service descriptions. It consists of two key
service components. The “Publish service” and
“Inquiry service” are used by the DASs and the I-

Broker to publish and find the DASs’ service
description respectively.

B. Negotiation Model
CAPTAIN includes the negotiation model to deal with

the negotiation situation between the negotiation participants
to agree on the terms and conditions relating to the supply of
the services. As shown in figure 3, the negotiation model for
CAPTAIN consists of four main elements: negotiation
process, negotiation object, negotiation protocol and decision
model. During service negotiation, the negotiation elements
are used by the system components of CAPTAIN, especially
the P-Broker, the I-Broker and the DASs, in order to create
the integrated care plan the meet the needs of the end-user.

Figure 3: The negotiation model of CAPTAIN

� The negotiation process is a dynamic end-to-end
process. It consists of three main sequential phrases
of negotiation process. It begins from the end-user
request and ends up with a resolution.

o The pre-negotiation phrase is concerned with
producing the initial information, such as DASs’
service description and the query of the end
user, for the service negotiation phrase.

o The service negotiation phrase is the phrase in
which the P-Broker negotiates with the DASs

International Journal of Applied Computer Technology and Information Systems: Volume 2, No.2, October2012 - March 2013

9

via the I-Broker in order to produce the
integrated care plan for the end user.

o The post-negotiation phrase deals with the
negotiation results from the service negotiation
phrase. The end user is involved in the decision
making since the end user accepts or declines
the results.

� The negotiation object contains the information
required for negotiation between the P-Broker and
the DASs. There are three main types of negotiation
object: query, offer and acknowledgement. The P-
Broker creates the query and proposes it to the
DASs. Then the DASs respond to the P-Broker’s
query with the counter offers. Finally, the P-broker
issues the acknowledgement of its decision-making
according to the counter offers to the DASs.

� The negotiation protocol defines the rules and the
states of negotiation interaction followed by all
system components of CAPTAIN during service
negotiation process. So the P-Broker and the DASs
can negotiation to reach a mutual agreement between
them. The negotiation protocol is shown in figure 4.

Figure 4 The Negotiation Protocol

� The decision model defines the rules employed by
the P-Broker and the DASs for decision making.
Each negotiation participant has its own decision
model of strategy which is used to define the plan of
decisions or actions needed to achieve its negotiation
objective.

C. Service Negotiation in CAPTAIN
Figure 5 presents a sequence message diagram that

illustrates service negotiation in CAPTAIN. It includes all
negotiation elements for CAPTAIN to support the service
negotiation between the P-Broker and the DASs. The result
of the negotiation is the integrated care plan that meets the
needs of the end user.

� The pre-negotiation phrase produces the information
needed for the service negotiation phrase. The DASs
publish their service descriptions to the semantic

registry so that the I-Broker, then, can find their
service descriptions during service negotiation
between the negotiation participants. After that, the
end user generates a request for the P-Broker by
choosing and revising a care plan retrieved from the
domain knowledge. Finally, the P-Broker proposes
the request to the I-Broker to formulate specific
queries for the DASs.

� The service negotiation phrase takes place between
the P-Broker and the DASs. The P-Broker proposes
the queries, via the I-Broker, to the DASs for the
DASs’ counter offers. The P-Broker selects the
counter offers preferred by the end user. Then the P-
Broker creates and presents the integrated care plan
to the end user.

� The post-negotiation phrase involves the decision-
making by the end user to accept or decline the result
from the P-Broker. The accepted integrated care plan
is updated to the P-Broker’s domain knowledge.
Then the P-Broker will issue an acknowledgement of
the end user’s decision making to the DASs to
update data in their data sources.

D. Implementation
The CAPTAIN system is a dynamic web application. The

development and implementation of the CAPTAIN broker
prototype is based on Java 2 Enterprise Edition (J2EE) Web
Services technologies, and runs within the Eclipse Java EE
IDE for Web Developers environment that works on a
Windows platform. The system prototype supports Web
Services standards, for example XML (Extensible Markup
Language), SOAP (Simple Object Access Protocol), WSDL
(Web Services Description Language), and UDDI (Universal
Description, Discovery and Integration).

The CAPTAIN system is deployed on the Apache
Tomcat web application server. Besides of the web user
interface and the semantic registry, all of the system
components of CAPTAIN (the P-Broker, the I-Broker, the
DASs and registry service) are deployed as Web Services.
Therefore, they can work together through the three basic
platform elements of Web Services: SOAP, WSDL and
UDDI.

A set of scenarios based on the use case has been
developed based on an integrated care plan within the
context of health and social care. The integrated care plan is
used to provide a research case study. A clinician, acting on
behalf of the patient, use the CAPTAIN system to negotiate
with different healthcare service providers in order to satisfy
the form of the patient’s needs. The aim of the negotiation is
to agree on the terms of any conditions relating to supplying
the healthcare services for the patient.

IV. ORDERING OF EVENTS IN DISTRIBUTED SYSTEMS

In a distributed system, the ordering of events or
processes is one of the basic aspects for an observer to
analyse and understand the system for such purposes such as
performance analysis, monitoring and debugging the system.

International Journal of Applied Computer Technology and Information Systems: Volume 2, No.2, October2012 - March 2013

10

Figure 5 The Sequence Diagram of Service Negotiation in CAPTAIN

[2][11] A distributed system consists of a set of diverse
processes that are spatially separated. Each process
comprises a serial of events. Based on an application, the
events in the process are mostly categorized into three types.

� The exchange information by sending or receiving a
message in the process

� The execution of a subprogram

� A single machine instruction on the computer

A partial ordering of the events is one of the common
approaches that is used to observe the ordering of events in a
distributed system. [9] For any single process, the order of
the events with a priori overall ordering describes how an
event takes place before or after the other event. In a specific
order, one of two events occurs first. This partial ordering is
defined as the “happened before” relation, denoted by “ ”.
The relation on a group of events of a system is regulated by
the following three conditions.

- if a and b are events in the same process and a occurs
before b, then a b.

- If a is the sending of a message by one process and b is
the receipt of the same message by another process, then a
b.

- If a b and b c, then a c.

Hence, the events or discrete actions is useful for
understanding or analysing any multi-process system by
providing the means for the observation of what is occurring
in the system. [2]

V. RESEARCH METHOD

The aim of this research is to investigate the system
behavior of the CAPTAIN system during service negotiation
between a planning broker and service providers. For the
observation of the system behavior of CAPTAIN, the event
logger is used to record a partial ordering of the events which
are followed by negotiation process and protocol of the
CAPTAIN system. It records the timestamp when the
‘receiver’ system component receives the message sent from
the ‘sender’ system component that the event of the ‘sender’
“happened before” the one of the ‘receiver’.

Figure 6 illustrates the system diagram of the event
logger. The event logger is employed as a web service. It
receives event data from those system components during the
process of service negotiation in CAPTAIN, and records the
event data into a log file. There are two kinds of event data:

� the names of the system component

� the event together with its timestamp.

The example of the event data is shown as follows:

event(‘P-Broker’,‘offer’,‘I-Broker’,‘2012-03-15 09:47:13.908’)

International Journal of Applied Computer Technology and Information Systems: Volume 2, No.2, October2012 - March 2013

11

Figure 6 System Diagram of Event Logger

This event occurs in the P-Broker when it receives a
message from the I-Broker on date and time as 2009-03-15
and 09:47:13.908 respectively. The second is set to three
fractional digits that produce timestamps to millisecond
precision.

VI. RESULT AND DISCUSSION

Table 1 shows the event data of the event logger
recording a partial ordering of the events which are followed
by negotiation process and protocol of the CAPTAIN
system. In addition, figure 7 presents the sequence diagram
of the sequence and timestamps of the events of the system
components interacting each other during the service
negotiation process.

Sender Message Receiver Timestamp

P-Broker Query I-Broker 2012-03-15
09:47:15.628

Semantic
registry DAS list I-Broker 2012-03-15

09:47:16.642

I-Broker Offer DAS1 2012-03-15
09:47:17.018

DAS1 Counter offer I-Broker 2012-03-15
09:47:18.078

I-Broker Offer DAS2 2012-03-15
09:47:18.520

DAS2 Counter offer I-Broker 2012-03-15
09:47:35.19.465

I-Broker Offer DAS3 2012-03-15
09:47:20.189

DAS3 Counter offer I-Broker 2012-03-15
09:47:21.060

I-Broker Result P-Broker 2012-03-15
09:47:21.643

Table 1 The Event Data of the Event Logger

The ordering of events begins with the P-Broker
submitting a query to the I-Broker. Then, the “happened
before” system components send messages to the receipt
system components at a specific time and a particular point
of the each event. Next, the I-Broker exchanges the messages
by sending and receiving to and from several DASs of data
service providers according to the ordering of negotiation
process and protocol. Finally, the P-Broker receives the
result from the I-Broker to produce the integrated care plan

for the end-user. These events form the serial events in
timestamp order. As a result, all system components process
their tasks, and then, send and receive messages among them
as in orders specified by CAPTAIN.

Figure 7 The Ordering of Events in Service Negotiation
for CAPTAIN

From the aspect of service negotiation in CAPTAIN, the
order of the events with a priori total ordering illustrates that
an event takes place before or after the other event. Hence,
the proper ordering of the events entails that the main system
components of the CAPTAIN system are properly regulated
by the negotiation process and protocol. The negotiation
objects or messages are exchanged by sending and receiving
between the P-Broker and the DASs via the I-Broker as in
the serial of processes of service negotiation. As the result,
the P-Broker can receive the negotiation result to produce the
integrated care plan that meets the needs of the end user.

VII. CONCLUSION

In this paper, The IBHIS and CAPTAIN systems are
described that both of the systems have been developed
based on the concept of service-based software model. The
CAPTAIN system is a distributed system consisting of a
number of diverse system components which are spatially
separated. The partial ordering of events in the CAPTAIN
system was observed by using an event logger. The result of
the investigation shows that all system components are
exactly regulated by the negotiation process and protocol.
They can exchange the negotiation objects sent and received
among the system components as in the order of processes of
the negotiation process and protocol. Therefore the
CAPTAIN system performs properly to provide planning
services by producing the integrated care plan for the client.

As a future work, the event logger should be developed to
investigate the system behavior of CAPTAIN, not only for
the service negotiation phrase but also for the pre-negotiation
and post-negotiation phrases. Therefore we can ensure that
the CAPTAIN system can perform correctly from the end
user request to a resolution.

ACKNOWLEDGMENT

International Journal of Applied Computer Technology and Information Systems: Volume 2, No.2, October2012 - March 2013

12

I would like to acknowledge and extend my gratitude to
Professor David Budgen for his guidance and constructive
advice as well as his encouragement and support when I did
my PhD research at University of Durham, UK. I would like
to thank Professor Michael Rigby who supported me fruitful
knowledge for my research and Dr. Mark Turner who had
supported me, particularly in the part of system
implementation. Both of them work in Keele University, UK.

REFERENCES

[1] A. Elfatatry, P. and Layzell, “Negotiating in service-oriented
environments”, Commun. ACM, 2004, 47(8), pp. 103–108.

[2] C. Fidge, “Fundamentals of distributed system observation”, IEEE
Software, 1996, 13(6), pp. 77–83.

[3] D. Budgen, P. Brereton, and M. Turner, “Codifying a service
architectural style”, in COMPSAC, 2004, pp. 16–22.

[4] D. Budgen, M. Rigby, P. Brereton, and M. Turner, “A data integration
broker for healthcare systems”, Computer 40(4), 2007, 34–41.

[5] D. Budgen, M. Turner, I. Kotsiopoulos, F. Zhu, M. Russell, M. Rigby,
K. Bennett, P. Brereton, J. Keane, “Managing healthcare information:
The role of the broker”, Healthgrid, 2005, pp. 3–16.

[6] H. Demirkan, R. J. Kauffman, J. A. Vayghan, H. G. Fill, D. Karagiannis,
and P. P. Maglio, “Service-oriented technology and management: Perspec-
tives on research and practice for the coming decade”, Electronic
Commerce Research and Application, 2008, 7(4), pp. 356–376.

[7] IBM-SOA, “IBM:Service-oriented architecture (SOA)”, [Online]
Available from: http://www.01.ibm.com/software/solutions/soa/
[Accessed: 1st August 2012].

[8] J. Domingue, D. Fensel, J. Davies, R. González-Cabero, and C.
Pedrinaci, “The Service Web: a Web of Billions of Services”, A
European Research Perspective, 2009, pp. 203–216.

[9] L. Lamport, “Time, clocks, and the ordering of events in a distributed
sys”em", Communication, ACM, 1978, 21(7), pp. 558–565.

[10] M. Papazoglou, P . Traverso, S. Dustdar, and F . Leymann, “Service-
oriented computing: State of the art and research challenges”,
Computer, 2007, 40, pp. 38-45.

[11] M. Raynal, and M. Singhal, “Logical time: Capturing causality in
distributed systems”, Computer, 1996, 29, pp. 49–56.

[12] T. Kohlborn, A. Korthaus, and M. Rosemann, “Business and software
service lifecycle management”, Enterprise Distributed Object Computing
Conference, IEEE International, 2009, pp. 87–96.

International Journal of Applied Computer Technology and Information Systems: Volume 2, No.2, October2012 - March 2013

13

