
International Journal of Applied Computer Technology and Information Systems: Volume 13, No.1, April 2023 - September 2023

17

Web API and Quantum Simulator for Testing Quantum Entanglement Concepts

Kayun Chantarasathaporn1, Choonhapong Thaiupathump2, Nirun Ngamkerd3,

Poramate Ruksawong4, Suphanut Kathong5 and Sudasawan Ngammongkolwong6

1,2,3,4,5Department of Information Technology and Management,

Faculty of Business Administration, Krirk University, Bangkok, Thailand

e-mail: 1kayun.cha@krirk.ac.th, 2choonhapong.tha@staff.krirk.ac.th
3nirun.nga@staff.krirk.ac.th, 4pruksawong@gmail.com, 5supanut@saijai-tech.com

6Faculty of Science and Technology

Southeast Bangkok University, Bangkok, Thailand

e-mail: sudasawan@southeast.ac.th

Abstract—Quantum computing uses concept of quantum

physics to deploy on next generation quantum computers.

Several inventions and innovations in this field in the last

two decades can push the theory to real works much faster

than what in the past. This paper is intended for students

who are interested in quantum software development and

related mathematical concepts. Simple matrix

explanations of fundamental quantum entanglement made

it easier to understand. Showing how to create Q# quantum

library (.dll) that operates on quantum simulator, links with

C# Web API and works with Swagger web client makes

interested learners clearer about how to generate program

from supporting theories and tools. Running results of this

sample development were compatible with the

mathematical principle of quantum entanglement and fit

that concept. This paper can be a good kickstart for

learners who want to clarify concepts and really create

basic quantum programs on his or her own computer.
Keywords: quantum computing; quantum programming;

Q#; QSharp; entanglement; quantum simulator; Web API

I. INTRODUCTION

The concept of quantum mechanics in modern physics
has been widespread rapidly in IT world during recent two
decades due to the joining and contribution of major
vendors such as Microsoft, IBM, Google and Amazon[1].
More sophisticated tools, hardware and software have also
been shared for public use at low or no cost. In part of
learning quantum computing concepts, many more
simplified versions of explanation have been released.
From all supporting reasons, more and more people are
persuaded to try and learn quantum computing.

Classical computing uses binary digits, or bits, whereas
quantum computing uses quantum bits, or qubits. Unlike
classical computing, which employs bits with values of 0 or
1, quantum computing uses qubits with values of both 0 and
1. Superposition is the idea that allows a qubit value to be
both 0 and 1 at the same time. Aside from superposition,
other well-known fundamental concepts in quantum
computing that should be learned include entanglement and
teleportation.

 Quantum computing research has been handled in both
western and eastern countries. In Asian side, China, Japan
and India have been considered the leaders[2]. University
of Science and Technology of China (USTC) announced in
2021 that they could invent quantum computer that the
operation was based on light which was much faster than
the former technology that the westerns used[3].

Interest of quantum computing can be divided into parts
of hardware and software[4]. Hardware portion can also be
classified to physical hardware (standalone and cloud base)
and hardware simulator. Software chunk can be divided
into system software (such as operating system)[5] and
application software[6].

This paper targets in providing simple explanation of
quantum entanglement and showing how to create related
software. Figure 1 illustrates the software architecture.
Quantum entanglement library (.dll), that operates on
quantum simulator, is written in Q#. This library is
consumed by client which is built in form of .NET Web API
written in C#. As a Web API, any platform of client that
can communicate with it, such as, web, windows, mobile or
even IoT apps can then communicate back and forth with
quantum entanglement library that operates on quantum
simulator as shown in Figure 1.

 Contents of this article are as follows: a brief
discussion of bits and qubits, quantum gates and related
mathematics, an overview of quantum entanglement, a
demonstration of building a Q# library, a sample creation of
C# Web API, Web API consumption, and the prove that the
created software solution could provide results that
corresponded to the theory. As this development was run
on quantum simulator, learners will learn how to use their
own standard computers to practice quantum programming
which help sharpen their skill to be able to learn more
complicated quantum computing topics.

International Journal of Applied Computer Technology and Information Systems: Volume 13, No.1, April 2023 - September 2023

18

Figure 1. Various kinds of app can communicate through Web API to quantum entanglement code library.

II. FUNDAMENTAL OF QUANTUM COMPUTING

A. Bit and Qubit

A classical bit is the fundamental unit of classical

computing and can only have one of two values: 0 or 1. A

qubit, on the other hand, is the fundamental unit of

quantum computing and may be both 0 (Dirac notation for

0 is |0>) and 1 (Dirac notation for 1 is |1>) at the same time.

This is referred to as superposition state. It can be written

as (
|0> +|1>

√2
).

Figure 2. Classical Bit and Qubit[7]

B. Vector Form and Dirac Notation

(1
0
) is a vector form of |0> while (0

1
) is a vector format

of |1>. From [4], superposition of one qubit (
|0> +|1>

√2
) can

be written in vector form as (
1

√2
1

√2

). For 2 qubits, they can be

written in the format of vector as well. [4] shows that |00>

has vector form as (
1
0
0
0

) while |01> has (
0
1
0
0

) as its vector.

(
0
0
1
0

) is a vector form of |10> while |11> has (
0
0
0
1

) as its

vector.

C. Essential Quantum Logic Gates for Quantum

Entanglement.

The basic building blocks for creating quantum
networks (quantum circuits), which are essential for
carrying out quantum computation, are quantum logic
gates. They can all be explained in matrix or vector form.

The following are the gates used in creating
entanglement.

- H gate or quantum Hadamard gate: The H gate is used
to create superpositions of qubits. It takes a qubit in the |0⟩

state to a state that is equally likely to be measured as |0⟩ or
|1⟩.

- CNOT gate or quantum controlled-NOT gate: The
CNOT gate is a two-qubit gate that flips the second (target)
qubit if and only if the first (control) qubit is |1⟩.

Quantum gates can be written or drawn as the following
equivalent circuit, matrix, and truth table shown in Table 1.

• H gate
Hadamard gates can convert a qubit from one in usual

status to one in status of superposition and vice versa. When
a qubit is in superposition, it is thought to be in a
probabilistic state, as opposed to its typical deterministic
state.

As shown in Table 1, H gate can be written in matrix

form as (

1

√2

1

√2
1

√2

−1

√2

). The results when it operates with qubit

|0> and |1> are as shown in (1) and (2).

H|0> = (

1

√2

1

√2
1

√2

−1

√2

)(1
0
) = (

1

√2
1

√2

) (1)

International Journal of Applied Computer Technology and Information Systems: Volume 13, No.1, April 2023 - September 2023

19

H|1> = (

1

√2

1

√2
1

√2

−1

√2

)(0
1
) = (

1

√2
−1

√2

) (2)

For H gate, its product result when operating with

superposition status vector will bring back qubits to usual
status. This can be proved in (3) and (4).

H(
1

√2
1

√2

) = (

1

√2

1

√2
1

√2

−1

√2

)(
1

√2
1

√2

) = (1
0
) = |0> (3)

H(
1

√2
−1

√2

) = (

1

√2

1

√2
1

√2

−1

√2

)(
1

√2
−1

√2

) = (0
1
) = |1> (4)

State machine diagram of Hadamard gate is shown in
Figure 3.

Figure 3. State Machine of H gate [8]

• CNOT gate
CNOT gate works with 2 qubits. While the first qubit is

called 'control' qubit, the second qubit is called 'target' qubit.
If the control qubit is 1, the target qubit is toggled (0 => 1
or 1 => 0). If the control qubit is 0, the target qubit is
unchanged (0 => 0 or 1 => 1). Control qubit itself will never
be changed.
 00 => 00 10 => 11

 01 => 01 11 => 10
Matrix form of CNOT gate is as follows.

 C = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

).

The following shows how CNOT gate can toggle the

target qubit when the control qubit is 1. Remember that

qubit |0> has vector form as (1
0
) while qubit |1> has (0

1
) as

its vector form.

C|10> = C((0
1
) ⊗ (1

0
)) = C((

0
0
1
0

))

 = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)(
0
0
1
0

) = (
0
0
0
1

) = (0
1
) ⊗ (0

1
) = |11>

C|11> = C((0
1
) ⊗ (0

1
)) = C((

0
0
0
1

))

 = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)(
0
0
0
1

) = (
0
0
1
0

) = (0
1
) ⊗ (1

0
) = |10>

Next, for CNOT gate, the target qubit will not be

changed if the control qubit is 0.

C|00> = C((1
0
) ⊗ (1

0
)) = C((

1
0
0
0

))

 = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)(
1
0
0
0

) = (
1
0
0
0

) = (1
0
) ⊗ (1

0
) = |00>

C|01> = C((1
0
) ⊗ (0

1
)) = C((

0
0
0
1

))

 = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)(
0
1
0
0

) = (
0
1
0
0

) = (1
0
) ⊗ (0

1
) = |01>

TABLE 1. GATES, QUANTUM CIRCUIT, MATRIX, AND TRUTH TABLE[9]

III. QUANTUM ENTANGLEMENT IN BRIEF

Mathematics behind quantum computing can be
explained easier when using vector and matrix. Quantum

CPHASE =

International Journal of Applied Computer Technology and Information Systems: Volume 13, No.1, April 2023 - September 2023

20

gates can also help explain quantum entanglement in simple
matrix form.

A. Quantum Entanglement and Matrix

If the product state of 2 qubits cannot be factored, these
2 qubits are considered entangled.

Tensor product of (𝑎
𝑏
) ⊗ (𝑐

𝑑
) is (

𝑎𝑐
𝑎𝑑
𝑏𝑐
𝑏𝑑

), so, it can be

factored out to get the values of ac, ad, bc and bd. If we try

to factor out the vector

(

1

√2

0
0
1

√2)

, the results should be as

follows.

1) ac =
1

√2
 2) ad = 0 3) bc = 0 4) bd =

1

√2

However, when seeing carefully, it can be seen that this
vector is unable to factor out because if ad = 0, it means
either a or d or both are 0. If a is 0, ac should also be 0, but
it is not. In other way, if d is 0, bd should be 0, but it is not.
When looking at bc, if bc = 0, it means either b or c or both
are 0. If b is 0, bd should also be 0, but it is not. Similarly,
if c is 0, ac should also be 0, but it is not.

Therefore, the above quantum state cannot be factored
out. Collapsing chance to |00> is 0.5 (50%) while
collapsing chance to |11> is also 0.5 (50%). In another way,
chances of collapsing to |01> or |10> are both 0 (0%).

B. Quantum Entanglement and Quantum Gates

From the above demonstration, vector

(

1

√2

0
0
1

√2)

 is in

entangled state. For simplicity, in quantum computing, it is

more often to use quantum gates than complicated

equations. Figure 4 shows that using H (Hadamard) and

CNOT gates can generate entangled state.

|0>

|0>
Figure 4. H and CNOT gates can create entangled state

C. How H and CNOT Can Generate Entangled State.

This paragraph will describe how both H and CNOT
gates can generate entangled state. To find vector of qubits
after using Hadamard gate, H gate’s State Machine diagram
in Figure 3 is referred.

• Case - control qubit is |0> and target qubit is |0> :

C(𝐻(1
0
) ⊗ (1

0
)) = C((

1

√2
1

√2

) ⊗ (1
0
)) = C

(

1

√2

0
1

√2

0)

 = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)

(

1

√2

0
1

√2

0)

 =

(

1

√2

0
0
1

√2)

.

• Case - control qubit is |0> and target qubit is |1> :

C(𝐻(1
0
) ⊗ (0

1
)) = C((

1

√2
1

√2

) ⊗ (0
1
)) = C

(

0
1

√2

0
1

√2)

 = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)

(

0
1

√2

0
1

√2)

 =

(

0
1

√2
1

√2

0)

.

• Case - control qubit is |1> and target qubit is |0> :

C(𝐻(0
1
) ⊗ (1

0
)) = C((

1

√2

−
1

√2

) ⊗ (1
0
)) = C

(

1

√2

0

−
1

√2

0)

 = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)

(

1

√2

0

−
1

√2

0)

 =

(

1

√2

0
0

−
1

√2)

.

• Case - control qubit is |1> and target qubit is |1> :

C(𝐻(0
1
) ⊗ (0

1
)) = C((

1

√2

−
1

√2

) ⊗ (0
1
)) = C

(

0
1

√2

0

−
1

√2)

 = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)

(

0
1

√2

0

−
1

√2)

 =

(

0
1

√2

−
1

√2

0)

.

From all entangled cases above, each case’s sum of
probabilities are as follows respectively.

• Case - control qubit is |0> and target qubit is |0> :
 |00> |01> |10> |11>

‖
1

√2
‖
2

+ ‖0‖2 + ‖0‖2 + ‖
1

√2
‖
2

 = 1

 0.5 0 0 0.5

• Case - control qubit is |0> and target qubit is |1> :
 |00> |01> |10> |11>

‖0‖2 + ‖
1

√2
‖
2

+ ‖
1

√2
‖
2

+ ‖0‖2 = 1

H

International Journal of Applied Computer Technology and Information Systems: Volume 13, No.1, April 2023 - September 2023

21

 0 0.5 0.5 0

• Case - control qubit is |1> and target qubit is |0> :
 |00> |01> |10> |11>

‖
1

√2
‖
2

+ ‖0‖2 + ‖0‖2 + ‖−
1

√2
‖
2

 = 1

 0.5 0 0 0.5

• Case - control qubit is |1> and target qubit is |1> :
 |00> |01> |10> |11>

‖0‖2 + ‖
1

√2
‖
2

+ ‖−
1

√2
‖
2

+ ‖0‖2 = 1

 0 0.5 0.5 0
This can prove that using Hadamard and CNOT gates

together can generate entangled state with total chances as
expected.

IV. CODING FOR QUANTUM ENTANGLEMENT

To develop solution as shown in Figure 1, the following

steps are needed, environment preparation, creating Q#

library (.dll) that performs quantum entanglement on

quantum simulator, building .NET Web API (C#) that

communicates with Q# library. From Web API, any kinds

of clients that can consume Web API, such as, windows,

web, mobile or even IoT apps are able to connect with

quantum system (in this case, it is quantum simulator).

A. Preparation

The following tools are used in this project.
- .NET SDK (version 6.0)

 (https://dotnet.microsoft.com/en-us/download)

- Visual Studio Code (as IDE)

 (https://code.visualstudio.com/download)

- Microsoft Quantum Development Kit for Visual Studio

 Code (Visual Studio Code Extension)

 (https://marketplace.visualstudio.com/items?itemName=

 zetta.qsharp-extensionpack)
Microsoft Quantum Development Kit for Visual Studio

Code can be downloaded from Extension Marketplace. The
tools mentioned above can be used under various operating
systems that support .NET such as MS Windows, macOS
and Linux.

B. Creating Q# Code Library for Quantum Entanglement

The following Q# code is for making quantum
entanglement library. The compiled file will be named as
QuantumLib02.dll. Source code shows sample usage of H
and CNOT gate functions. The program iterates 1,000
times. There are 4 inputs for BellState function,
controlInitialState (Bool), targetInitialState (Bool),
controlMeasurementBasis (Pauli) and
targetMeasurementBasis (Pauli). After measuring, if
resultControl is equal to resultTarget,
matchingMeasurement will be increased by one.

// QuantumLib02\Library.qs -> QuantumLib02.dll
namespace QuantumLib02 {

 open Microsoft.Quantum.Canon;

 open Microsoft.Quantum.Intrinsic;

 open Microsoft.Quantum.Preparation;

 open Microsoft.Quantum.Convert;

 operation BellState(controlInitialState : Bool,
targetInitialState : Bool,

controlMeasurementBasis : Pauli,

targetMeasurementBasis : Pauli) : String {

 mutable matchingMeasurement = 0;
 mutable zeroZero = 0;

 mutable zeroOne = 0;

 mutable oneZero = 0;

 mutable oneOne = 0;

 mutable zz = 0.0;
 mutable zo = 0.0;

 mutable oz = 0.0;

 mutable oo = 0.0;

 mutable allInt = 0;

 mutable allDouble = 0.0;
 for run in 0..999 {

 use (control, target) = (Qubit(), Qubit());

 // prepare |0> or |1> initial state

 PrepareQubitState(control,
controlInitialState);

 PrepareQubitState(target,

targetInitialState);

 H(control); // Hadamard gate

 CNOT(control, target); // CNOT gate
 // PrepareEntangledState([control],

[target]);

 let resultControl =

Measure([controlMeasurementBasis], [control]);
 let resultTarget =

Measure([targetMeasurementBasis], [target]);

 ResetAll([control, target]);

 set zeroZero += resultControl == Zero and

resultTarget == Zero ? 1 | 0;
 set zeroOne += resultControl == Zero and

resultTarget == One ? 1 | 0;

 set oneZero += resultControl == One and

resultTarget == Zero ? 1 | 0;
 set oneOne += resultControl == One and

resultTarget == One ? 1 | 0;

 set matchingMeasurement += resultControl ==

resultTarget ? 1 | 0;

 }
 set allInt = zeroZero + zeroOne + oneZero +

oneOne;

 set allDouble = IntAsDouble(allInt);

 set zz = IntAsDouble(zeroZero) / allDouble;

 set zo = IntAsDouble(zeroOne) / allDouble;

 set oz = IntAsDouble(oneZero) / allDouble;

 set oo = IntAsDouble(oneOne) / allDouble;

 mutable r = ("Initial system state: | " +

(controlInitialState ? "1" | "0") +
(targetInitialState ? "1" | "0") + ">" + ("

|00>: " + DoubleAsString(zz)) + (" |01>: " +

DoubleAsString(zo)) + (" |10>: " +

DoubleAsString(oz)) + (" |11>: " +

DoubleAsString(oo)) + (" Measurements of two
qubits matched: " +

IntAsString(matchingMeasurement)) + (", All sum:

" + DoubleAsString(allDouble/allDouble)));

 return r;

 }

 operation PrepareQubitState(qubit : Qubit,

initialState : Bool) : Unit is Adj {

 if (initialState) {
 X(qubit);

 }

 }

}

C. Calling Q# Library with C# and Running on Quantum

Simulator

To create C# Web API application project in Visual
Studio Code environment, the following command needs to

International Journal of Applied Computer Technology and Information Systems: Volume 13, No.1, April 2023 - September 2023

22

be run in terminal. In this case, the project name is
QuantumLib01Use02.
dotnet new webapi -o QuantumLib01Use02

Make sure that the "NuGet Package Manager" extension
is installed in Visual Studio Code because there are required
packages needed to be included. Adding packages from
NuGet Package Manager can be done via Command
Palette.
Command Palette (Ctrl + Shift + P) : NuGet Package Manager : Add Package

The newest version of both Microsoft.Quantum.
Simulators and Microsoft.Quantum.QSharp.Core have to
be downloaded and installed from NuGet Package
Manager.

The following C# code is running and connecting to Q#
library. Measuring qubits is done in PauliZ for both control
and target qubits. Q# library, QuantumLib02.dll, must be
put in the same folder as C# file.

// QuantumLib01Use02\Program.cs
using Microsoft.Quantum.Simulation.Core;
using Microsoft.Quantum.Simulation.Simulators;

using QuantumLib02;

var builder =

WebApplication.CreateBuilder(args);
builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen(c => {

 c.SwaggerDoc("v1", new() { Title="Test API",

Version="v1" });

});

var app = builder.Build();

app.MapGet("/Entanglement", async (int c, int t)

=> {
 using var qsim = new QuantumSimulator();

 bool blnControl, blnTarget;

 blnControl = (c == 0) ? false : true;

 blnTarget = (t == 0) ? false : true;

 string? result = await BellState.Run(qsim,
blnControl, blnTarget, Pauli.PauliZ,

Pauli.PauliZ);

 return Results.Ok(result);

});

app.UseSwagger();

app.UseSwaggerUI(c => {

 c.SwaggerEndpoint("/swagger/v1/swagger.json",

"v1");
 c.InjectStylesheet("/swagger/custom.css");

 c.RoutePrefix = String.Empty;

});

app.Run();

D. Modifying Project File to be Able to Work with ‘.dll’.

The .csproj file needs to be updated as follows to let the
project know that it will include ‘QuantumLib02.dll’ file.

Content of .csproj file after being updated will be as
follows. (In this case, getting latest versions of Microsoft.
Quantum.Simulators and Microsoft.Quantum.QSharp.Core
via NuGet is required.)
<!--QuantumLib01Use02\QuantumLib01Use02.csproj--
>
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference

Include="Swashbuckle.AspNetCore"
Version="6.5.0"/>

 <PackageReference

Include="Microsoft.Quantum.Simulators"

Version="0.28.263081"/>
 <PackageReference

Include="Microsoft.Quantum.QSharp.Core"

Version="0.28.263081"/>

 </ItemGroup>

 <ItemGroup>
 <Reference Include="QuantumLib02">
 <HintPath>QuantumLib02.dll</HintPath>
 </Reference>
 </ItemGroup>
</Project>

E. Results of the Solution

Web API can work with any platform of client. In this
experiment, a well-known API web client named
“Swagger” is applied. Usually, plain output from Web API
can be in JSON text. Running Web API from the Swagger
mask can render the result in easy to check format as shown
in Figure 5 and 6.

PS D:\workroom\LearnQuantumVSCode\QuantumLib01UseWebAPI02> dotnet run
Building...
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5165
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: D:\workroom\LearnQuantumVSCode\QuantumLib01UseWebAPI02

Figure 5. Using Swagger Template to Work with Web API

Figure 6 shows that the input data for entanglement

Web API are c (control qubit) and t (target qubit). Values

for c and t can be either 0 or 1. Output from this Web API

is in string format.

International Journal of Applied Computer Technology and Information Systems: Volume 13, No.1, April 2023 - September 2023

23

Figure 6. Sending Input and Get Output from Web API

HTTP response value from this entanglement Web

API will be 200 (Success) and outputs of all 4 cases are as

follows.

• |00> (control qubit as 0, target qubit as 0)

"Initial system state: | 00> |00>: 0.494 |01>: 0 |10>: 0 |11>:
0.506 Measurements of two qubits matched: 1000, All sum: 1"

• |01> (control qubit as 0, target qubit as 1)

"Initial system state: | 01> |00>: 0 |01>: 0.536 |10>: 0.464
|11>: 0 Measurements of two qubits matched: 0, All sum: 1"

• |10> (control qubit as 1, target qubit as 0)

"Initial system state: | 10> |00>: 0.508 |01>: 0 |10>: 0 |11>:
0.492 Measurements of two qubits matched: 1000, All sum: 1"

• |11> (control qubit as 1, target qubit as 1)

"Initial system state: | 11> |00>: 0 |01>: 0.496 |10>: 0.504
|11>: 0 Measurements of two qubits matched: 0, All sum: 1"

From the above results, there are 2 things that should be

seen, probabilities and final value of two qubits.

For probabilities, it is noticeable that sum of all

collapsing probabilities (all sum) of |00>, |01>, |10> and

|11> in each case is always 1. Also, the collapsing

probability in corresponding case is around 0.5 (50%), like

the chance of coin flip; this agrees to principle of

entanglement before collapsing.

About the final value of two qubits, this is shown in

‘Measurements of two qubits matched’. It is from the final

values of 2 qubits |XX> after passing CNOT gate, as shown

in Figure 4. There are 2 cases where values are 1000 which

is when initial system state is either |00> or |10>. It is easy

to understand for |00> case since both initial and final

qubits are unchanged, so ‘Measurements of two qubits’ is

always true and be counted. In another case that initial

qubits are |10>; as the control qubit is 1, so the target qubit

will be toggled after passing CNOT gate. With this reason,

the final qubits will be |11> which makes ‘Measurements

of two qubits matched’ be true and counted.

V. CONCLUSION

This study demonstrated that quantum entanglement
could be created by applying H (Hadamard) and CNOT
gates. Calculation using basic matrix was provided to make
the topic obvious and simple to understand. To exhibit how
to utilize quantum entanglement concepts in IT
programming, the Q# language was used to create an
entanglement library (.dll). This library was then run on
quantum simulator and communicated with the outside
world via .NET Web API written in C#. With the help of
Web API, various platforms of client such as windows,
web, mobile or even IoT apps can have channel, through
simulator, to perform quantum works. In this case, by
sending control and target qubits to process quantum
entanglement computation via Swagger web client, the
results from the system were matched with the result from
matrix calculation. Q# codes in this study can also be run
on a real quantum computer. This article benefits anyone
who is interested in learning the basic concepts of quantum
entanglement and wants to practice quantum programming
via simulator in his or her own computer.

REFERENCES

[1] B. Marr, “ Quantum Computing Now And In The Future:

Explanation, Applications, And Problems,” Forbes, Aug. 26,

2022. https://www.forbes.com/sites/bernardmarr/2022/08/26/

quantum- computing- now- and- in- the- future- explanation-

applications-and-problems/?sh=38224fed1a6b (accessed Mar.

14, 2023).

[2] J. Keane, “ The race toward a new computing technology is

heating up — and Asia is jumping on the trend,” CNBC, Jun.

06, 2022. https: / / www. cnbc. com/ 2022/ 06/ 07/ quantum-

computing- more- asian- countries- are- getting- in- on- the-

trend.html (accessed Mar. 14, 2023).

[3] V. Sankaran, “ China builds world’ s fastest programmable

quantum computers that outperform ‘ classical’ computers,”

Independent, Oct. 31, 2021. https: / /www.independent.co.uk/

tech/ china - scientists- programmable- quantum- computers-

b1946018.html (accessed Apr. 26, 2023).

[4] K. Chantarasathaporn, C. Thaiupathump, C. Kama, N.

Nopakun, and S. Ngammongkolwong, “Practical Entanglement

for Quantum Computing on Quantum Simulator by Q# ,” in

Proceeding of The 19th International Conference in Applied

Computer Technology and Information System, S. Rungruang

and W. Chupradist, Eds. , Bangkok: Southeast Bangkok

University, Mar. 2023, pp. 408–418.

[5] K. Kris, “ Windows on Quantum Computer (Explained) ,”

WorkwuT, Aug. 22, 2022. https: / / workwut. com/ windows-

quantum-computer/ (accessed Mar. 15, 2023).

[6] J. Dargan, “Top 5 Quantum Programming Languages in 2022,”

The Quantum Insider, 2022. https: / / thequantuminsider. com/

2022/ 07/ 28/ state- of- quantum- computing- programming-

languages-in-2022/ (accessed Mar. 15, 2023).

[7] Z. Hussain and A. Talib, “ Strengths and Weaknesses of

Quantum Computing,” Int J Sci Eng Res, vol. 7, no. 9, Sep.

2016.

[8] A. Tatourian, “ Lecture Notes of Quantum Computing for

Computer Scientists,” wordpress. com, Sep. 01, 2018.

https: / / tatourian. blog/ 2018/ 09/ 01/ quantum- computing- for-

computer-scientists/ (accessed May 01, 2023).

 control qubit

 target qubit

"Initial system state: | 00> |00>: 0.494 |01>: 0 |10>: 0 |11>: 0.506

Measurements of two qubits matched: 1000, All sum: 1"

200

International Journal of Applied Computer Technology and Information Systems: Volume 13, No.1, April 2023 - September 2023

24

[9] H. Paudel, M. Syamlal, and S. Crawford, “Quantum Computing

and Simulations for Energy Applications: Review and

Perspective,” An Open Access Journal of the American

Chemical Society, vol. 2, no. 3, pp. 151– 196, Jan. 2022,

Accessed: Mar. 17, 2023. [Online] . Available:

https://pubs.acs.org/doi/10.1021/acsengineeringau.1c00033

