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Abstract—Quantum computing uses concept of quantum 

physics to deploy on next generation quantum computers.  

Several inventions and innovations in this field in the last 

two decades can push the theory to real works much faster 

than what in the past.   This paper is intended for students 

who are interested in quantum software development and 

related mathematical concepts.  Simple matrix 

explanations of fundamental quantum entanglement made 

it easier to understand.  Showing how to create Q# quantum 

library (.dll) that operates on quantum simulator, links with 

C# Web API and works with Swagger web client makes 

interested learners clearer about how to generate program 

from supporting theories and tools.  Running results of this 

sample development were compatible with the 

mathematical principle of quantum entanglement and fit 

that concept.  This paper can be a good kickstart for 

learners who want to clarify concepts and really create 

basic quantum programs on his or her own computer. 
Keywords: quantum computing; quantum programming; 

Q#; QSharp;  entanglement; quantum simulator; Web API  

I. INTRODUCTION 

The concept of quantum mechanics in modern physics 
has been widespread rapidly in IT world during recent two 
decades due to the joining and contribution of major 
vendors such as Microsoft, IBM, Google and Amazon[1].  
More sophisticated tools, hardware and software have also 
been shared for public use at low or no cost.  In part of 
learning quantum computing concepts, many more 
simplified versions of explanation have been released.  
From all supporting reasons, more and more people are 
persuaded to try and learn quantum computing. 

Classical computing uses binary digits, or bits, whereas 
quantum computing uses quantum bits, or qubits.  Unlike 
classical computing, which employs bits with values of 0 or 
1, quantum computing uses qubits with values of both 0 and 
1.  Superposition is the idea that allows a qubit value to be 
both 0 and 1 at the same time.  Aside from superposition, 
other well-known fundamental concepts in quantum 
computing that should be learned include entanglement and 
teleportation.    
 
 

 
      Quantum computing research has been handled in both 
western and eastern countries.  In Asian side, China, Japan 
and India have been considered the leaders[2].  University 
of Science and Technology of China (USTC) announced in 
2021 that they could invent quantum computer that the 
operation was based on light which was much faster than 
the former technology that the westerns used[3]. 

Interest of quantum computing can be divided into parts 
of hardware and software[4].  Hardware portion can also be 
classified to physical hardware (standalone and cloud base) 
and hardware simulator.  Software chunk can be divided 
into system software (such as operating system)[5] and 
application software[6]. 

This paper targets in providing simple explanation of 
quantum entanglement and showing how to create related 
software.  Figure 1 illustrates the software architecture. 
Quantum entanglement library (.dll), that operates on 
quantum simulator, is written in Q#.  This library is 
consumed by client which is built in form of .NET Web API 
written in C#.  As a Web API, any platform of client that 
can communicate with it, such as, web, windows, mobile or 
even IoT apps can then communicate back and forth with 
quantum entanglement library that operates on quantum 
simulator as shown in Figure 1. 

  Contents of this article are as follows: a brief 
discussion of bits and qubits, quantum gates and related 
mathematics, an overview of quantum entanglement, a 
demonstration of building a Q# library, a sample creation of 
C# Web API, Web API consumption, and the prove that the 
created software solution could provide results that 
corresponded to the theory.   As this development was run 
on quantum simulator, learners will learn how to use their 
own standard computers to practice quantum programming 
which help sharpen their skill to be able to learn more 
complicated quantum computing topics.  
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Figure 1.  Various kinds of app can communicate through Web API to quantum entanglement code library. 

 

II. FUNDAMENTAL OF QUANTUM COMPUTING 

A. Bit and Qubit 

A classical bit is the fundamental unit of classical 

computing and can only have one of two values: 0 or 1.  A 

qubit, on the other hand, is the fundamental unit of 

quantum computing and may be both 0 (Dirac notation for 

0 is |0>) and 1 (Dirac notation for 1 is |1>) at the same time.  

This is referred to as superposition state.  It can be written 

as (
|0> +|1>

√2
). 

Figure 2.  Classical Bit and Qubit[7] 

B. Vector Form and Dirac Notation 

(1
0
) is a vector form of |0> while (0

1
) is a vector format 

of |1>.  From [4], superposition of one qubit (
|0> +|1>

√2
) can 

be written in vector form as (
1

√2
1

√2

).  For 2 qubits, they can be 

written in the format of vector as well.  [4] shows that |00> 

has vector form as (
1
0
0
0

) while |01> has  (
0
1
0
0

) as its vector.  

(
0
0
1
0

)  is a vector form of |10> while |11> has (
0
0
0
1

)  as its 

vector. 

C. Essential Quantum Logic Gates for Quantum 

Entanglement. 

The basic building blocks for creating quantum 
networks (quantum circuits), which are essential for 
carrying out quantum computation, are quantum logic 
gates.  They can all be explained in matrix or vector form.  

The following are the gates used in creating 
entanglement. 

- H gate or quantum Hadamard gate: The H gate is used 
to create superpositions of qubits. It takes a qubit in the |0⟩ 

state to a state that is equally likely to be measured as |0⟩ or 
|1⟩. 

- CNOT gate or quantum controlled-NOT gate: The 
CNOT gate is a two-qubit gate that flips the second (target) 
qubit if and only if the first (control) qubit is |1⟩. 

Quantum gates can be written or drawn as the following 
equivalent circuit, matrix, and truth table shown in Table 1. 

• H gate 
Hadamard gates can convert a qubit from one in usual 

status to one in status of superposition and vice versa.  When 
a qubit is in superposition, it is thought to be in a 
probabilistic state, as opposed to its typical deterministic 
state. 

As shown in Table 1, H gate can be written in matrix 

form as (

1

√2

1

√2
1

√2

−1

√2

).  The results when it operates with qubit 

|0> and |1> are as shown in (1) and (2). 

H|0> = (

1

√2

1

√2
1

√2

−1

√2

)(1
0
) = (

1

√2
1

√2

)   (1) 
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H|1> = (

1

√2

1

√2
1

√2

−1

√2

)(0
1
) = (

1

√2
−1

√2

)   (2) 

 
For H gate, its product result when operating with 

superposition status vector will bring back qubits to usual 
status.  This can be proved in (3) and (4). 

H(
1

√2
1

√2

) = (

1

√2

1

√2
1

√2

−1

√2

)(
1

√2
1

√2

) = (1
0
) = |0>  (3) 

H(
1

√2
−1

√2

) = (

1

√2

1

√2
1

√2

−1

√2

)(
1

√2
−1

√2

) = (0
1
) = |1>  (4) 

State machine diagram of Hadamard gate is shown in 
Figure 3. 

 
Figure 3. State Machine of H gate [8] 

 

• CNOT gate 
CNOT gate works with 2 qubits.  While the first qubit is 

called 'control' qubit, the second qubit is called 'target' qubit.  
If the control qubit is 1, the target qubit is toggled (0 => 1 
or 1 => 0).  If the control qubit is 0, the target qubit is 
unchanged (0 => 0 or 1 => 1).  Control qubit itself will never 
be changed. 
 00 => 00 10 => 11 

 01 => 01 11 => 10 
Matrix form of CNOT gate is as follows.  

 C = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

). 

The following shows how CNOT gate can toggle the 

target qubit when the control qubit is 1.  Remember that 

qubit |0> has vector form as (1
0
) while qubit |1> has (0

1
) as 

its vector form. 

C|10> = C((0
1
) ⊗ (1

0
)) = C((

0
0
1
0

))  

     = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)(
0
0
1
0

) = (
0
0
0
1

) = (0
1
) ⊗ (0

1
) = |11> 

C|11> = C((0
1
) ⊗ (0

1
)) = C((

0
0
0
1

))  

     = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)(
0
0
0
1

) = (
0
0
1
0

) = (0
1
) ⊗ (1

0
) = |10> 

 
Next, for CNOT gate, the target qubit will not be 

changed if the control qubit is 0. 

C|00> = C((1
0
) ⊗ (1

0
)) = C((

1
0
0
0

))  

     = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)(
1
0
0
0

) = (
1
0
0
0

) = (1
0
) ⊗ (1

0
) = |00> 

C|01> = C((1
0
) ⊗ (0

1
)) = C((

0
0
0
1

))  

     = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)(
0
1
0
0

) = (
0
1
0
0

) = (1
0
) ⊗ (0

1
) = |01> 

 
TABLE 1. GATES, QUANTUM CIRCUIT, MATRIX, AND TRUTH TABLE[9] 

III. QUANTUM ENTANGLEMENT IN BRIEF 

Mathematics behind quantum computing can be 
explained easier when using vector and matrix.  Quantum 

CPHASE = 
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gates can also help explain quantum entanglement in simple 
matrix form.   

A. Quantum Entanglement and Matrix 

If the product state of 2 qubits cannot be factored, these 
2 qubits are considered entangled. 

Tensor product of (𝑎
𝑏
) ⊗ (𝑐

𝑑
) is (

𝑎𝑐
𝑎𝑑
𝑏𝑐
𝑏𝑑

), so, it can be 

factored out to get the values of ac, ad, bc and bd.  If we try 

to factor out the vector 

(

 
 

1

√2

0
0
1

√2)

 
 

, the results should be as 

follows. 

1) ac = 
1

√2
 2) ad = 0 3) bc = 0   4) bd = 

1

√2
 

However, when seeing carefully, it can be seen that this 
vector is unable to factor out because if ad = 0, it means 
either a or d or both are 0.  If a is 0, ac should also be 0, but 
it is not.  In other way, if d is 0, bd should be 0, but it is not.  
When looking at bc, if bc = 0, it means either b or c or both 
are 0.  If b is 0, bd should also be 0, but it is not.  Similarly, 
if c is 0, ac should also be 0, but it is not. 

Therefore, the above quantum state cannot be factored 
out.  Collapsing chance to |00> is 0.5 (50%) while 
collapsing chance to |11> is also 0.5 (50%).  In another way, 
chances of collapsing to |01> or |10> are both 0 (0%). 

B. Quantum Entanglement and Quantum Gates 

From the above demonstration, vector 

(

 
 

1

√2

0
0
1

√2)

 
 

 is in 

entangled state.  For simplicity, in quantum computing, it is 

more often to use quantum gates than complicated 

equations.  Figure 4 shows that using H (Hadamard) and 

CNOT gates can generate entangled state. 

 
|0> 

 
 

|0> 
Figure 4. H and CNOT gates can create entangled state 

 

C. How H and CNOT Can Generate Entangled State. 

This paragraph will describe how both H and CNOT 
gates can generate entangled state.  To find vector of qubits 
after using Hadamard gate, H gate’s State Machine diagram 
in Figure 3 is referred.   

• Case - control qubit is |0> and target qubit is |0> :  

C(𝐻(1
0
)  ⊗ (1

0
)) = C((

1

√2
1

√2

) ⊗ (1
0
)) = C

(

 
 

1

√2

0
1

√2

0)

 
 

  

        = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)

(

 
 

1

√2

0
1

√2

0)

 
 

 = 

(

 
 

1

√2

0
0
1

√2)

 
 

. 

• Case - control qubit is |0> and target qubit is |1> : 

C(𝐻(1
0
)  ⊗ (0

1
)) = C((

1

√2
1

√2

) ⊗ (0
1
)) = C

(

 
 

0
1

√2

0
1

√2)

 
 

  

        = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)

(

 
 

0
1

√2

0
1

√2)

 
 

 = 

(

 
 

0
1

√2
1

√2

0)

 
 

. 

 
 

• Case - control qubit is |1> and target qubit is |0> :  

C(𝐻(0
1
)  ⊗ (1

0
)) = C((

1

√2

−
1

√2

) ⊗ (1
0
)) = C

(

 
 

1

√2

0

−
1

√2

0 )

 
 

  

        = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)

(

 
 

1

√2

0

−
1

√2

0 )

 
 

 = 

(

 
 

1

√2

0
0

−
1

√2)

 
 

. 

• Case - control qubit is |1> and target qubit is |1> : 

C(𝐻(0
1
)  ⊗ (0

1
)) = C((

1

√2

−
1

√2

) ⊗ (0
1
)) = C

(

 
 

0
1

√2

0

−
1

√2)

 
 

  

        = (
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

)

(

 
 

0
1

√2

0

−
1

√2)

 
 

 = 

(

 
 

0
1

√2

−
1

√2

0 )

 
 

. 

From all entangled cases above, each case’s sum of 
probabilities are as follows respectively.  

• Case - control qubit is |0> and target qubit is |0> :  
  |00>            |01>           |10>            |11> 

‖
1

√2
‖
2

+ ‖0‖2 + ‖0‖2 + ‖
1

√2
‖
2

 = 1 

  0.5                0                0               0.5 

• Case - control qubit is |0> and target qubit is |1> : 
              |00>            |01>            |10>             |11> 

‖0‖2 + ‖
1

√2
‖
2

+ ‖
1

√2
‖
2

+ ‖0‖2 = 1 

H 
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   0               0.5                0.5               0 

• Case - control qubit is |1> and target qubit is |0> :  
             |00>            |01>           |10>               |11> 

‖
1

√2
‖
2

+ ‖0‖2 + ‖0‖2 + ‖−
1

√2
‖
2

 = 1 

   0.5               0                0                  0.5 

• Case - control qubit is |1> and target qubit is |1> :  
         |00>           |01>                |10>              |11> 

‖0‖2 + ‖
1

√2
‖
2

+ ‖−
1

√2
‖
2

+ ‖0‖2 = 1 

   0               0.5                  0.5                  0 
This can prove that using Hadamard and CNOT gates 

together can generate entangled state with total chances as 
expected. 

IV. CODING FOR QUANTUM ENTANGLEMENT 

To develop solution as shown in Figure 1, the following 

steps are needed, environment preparation, creating Q# 

library (.dll) that performs quantum entanglement on 

quantum simulator, building .NET Web API (C#) that 

communicates with Q# library.  From Web API, any kinds 

of clients that can consume Web API, such as, windows, 

web, mobile or even IoT apps are able to connect with 

quantum system (in this case, it is quantum simulator).  

A. Preparation 

The following tools are used in this project.  
- .NET SDK (version 6.0)  

  (https://dotnet.microsoft.com/en-us/download) 

- Visual Studio Code (as IDE)  

  (https://code.visualstudio.com/download) 

- Microsoft Quantum Development Kit for Visual Studio 

  Code (Visual Studio Code Extension) 

  (https://marketplace.visualstudio.com/items?itemName= 

  zetta.qsharp-extensionpack) 
Microsoft Quantum Development Kit for Visual Studio 

Code can be downloaded from Extension Marketplace.  The 
tools mentioned above can be used under various operating 
systems that support .NET such as MS Windows, macOS 
and Linux. 

B. Creating Q# Code Library for Quantum Entanglement 

The following Q# code is for making quantum 
entanglement library.  The compiled file will be named as 
QuantumLib02.dll.  Source code shows sample usage of H 
and CNOT gate functions.  The program iterates 1,000 
times.  There are 4 inputs for BellState function, 
controlInitialState (Bool), targetInitialState (Bool), 
controlMeasurementBasis (Pauli) and 
targetMeasurementBasis (Pauli).  After measuring, if  
resultControl is equal to resultTarget, 
matchingMeasurement will be increased by one. 

 
// QuantumLib02\Library.qs -> QuantumLib02.dll 
namespace QuantumLib02 { 

  

 open Microsoft.Quantum.Canon; 

 open Microsoft.Quantum.Intrinsic; 

 open Microsoft.Quantum.Preparation; 

 open Microsoft.Quantum.Convert; 

  

 operation BellState(controlInitialState : Bool, 
targetInitialState : Bool, 

controlMeasurementBasis : Pauli, 

targetMeasurementBasis : Pauli) : String { 

  mutable matchingMeasurement = 0; 
  mutable zeroZero = 0; 

  mutable zeroOne = 0; 

  mutable oneZero = 0; 

  mutable oneOne = 0; 

  mutable zz = 0.0; 
  mutable zo = 0.0; 

  mutable oz = 0.0; 

  mutable oo = 0.0; 

  mutable allInt = 0; 

  mutable allDouble = 0.0; 
  for run in 0..999 { 

   use (control, target) = (Qubit(), Qubit()); 

   // prepare |0> or |1> initial state 

   PrepareQubitState(control, 
controlInitialState); 

   PrepareQubitState(target, 

targetInitialState); 

   H(control); // Hadamard gate 

   CNOT(control, target); // CNOT gate 
   // PrepareEntangledState([control], 

[target]); 

   let resultControl = 

Measure([controlMeasurementBasis], [control]); 
   let resultTarget = 

Measure([targetMeasurementBasis], [target]); 

   ResetAll([control, target]); 

   set zeroZero += resultControl == Zero and 

resultTarget == Zero ? 1 | 0; 
   set zeroOne += resultControl == Zero and 

resultTarget == One ? 1 | 0; 

   set oneZero += resultControl == One and 

resultTarget == Zero ? 1 | 0; 
   set oneOne += resultControl == One and 

resultTarget == One ? 1 | 0; 

   set matchingMeasurement += resultControl ==  

resultTarget ? 1 | 0; 

  } 
  set allInt = zeroZero + zeroOne + oneZero + 

oneOne; 

  set allDouble = IntAsDouble(allInt); 

  set zz = IntAsDouble(zeroZero) / allDouble; 

  set zo = IntAsDouble(zeroOne) / allDouble; 

  set oz = IntAsDouble(oneZero) / allDouble; 

  set oo = IntAsDouble(oneOne) / allDouble; 

  mutable r = ("Initial system state: | " + 

(controlInitialState ? "1" | "0") + 
(targetInitialState ? "1" | "0") + ">" + ("  

|00>: " + DoubleAsString(zz)) + ("  |01>: " + 

DoubleAsString(zo)) +  ("  |10>: " + 

DoubleAsString(oz)) + ("  |11>: " + 

DoubleAsString(oo)) + ("  Measurements of two 
qubits matched: " + 

IntAsString(matchingMeasurement)) + (", All sum: 

" + DoubleAsString(allDouble/allDouble))); 

  return r; 

 } 

   

 operation PrepareQubitState(qubit : Qubit, 

initialState : Bool) : Unit is Adj { 

  if (initialState) { 
   X(qubit); 

  } 

 } 

} 

C. Calling Q# Library with C# and Running on Quantum 

Simulator 

To create C# Web API application project in Visual 
Studio Code environment, the following command needs to 
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be run in terminal.  In this case, the project name is 
QuantumLib01Use02. 
dotnet new webapi -o QuantumLib01Use02 

Make sure that the "NuGet Package Manager" extension 
is installed in Visual Studio Code because there are required 
packages needed to be included.  Adding packages from 
NuGet Package Manager can be done via Command 
Palette. 
Command Palette (Ctrl + Shift + P) : NuGet Package Manager : Add Package 

The newest version of both Microsoft.Quantum. 
Simulators and Microsoft.Quantum.QSharp.Core have to 
be downloaded and installed from NuGet Package 
Manager. 

The following C# code is running and connecting to Q# 
library.  Measuring qubits is done in PauliZ for both control 
and target qubits.  Q# library, QuantumLib02.dll, must be 
put in the same folder as C# file. 

 
// QuantumLib01Use02\Program.cs 
using Microsoft.Quantum.Simulation.Core; 
using Microsoft.Quantum.Simulation.Simulators; 

using QuantumLib02; 

 

var builder = 

WebApplication.CreateBuilder(args); 
builder.Services.AddEndpointsApiExplorer(); 

builder.Services.AddSwaggerGen( c => { 

 c.SwaggerDoc("v1", new() { Title="Test API", 

Version="v1" }); 

}); 

var app = builder.Build(); 

 

app.MapGet("/Entanglement", async (int c, int t) 

=> { 
 using var qsim = new QuantumSimulator(); 

 bool blnControl, blnTarget; 

 blnControl = (c == 0) ? false : true; 

 blnTarget = (t == 0) ? false : true; 

 string? result = await BellState.Run(qsim, 
blnControl, blnTarget, Pauli.PauliZ, 

Pauli.PauliZ); 

 return Results.Ok(result); 

}); 
 

app.UseSwagger(); 

app.UseSwaggerUI(c => {  

 c.SwaggerEndpoint("/swagger/v1/swagger.json", 

"v1"); 
 c.InjectStylesheet("/swagger/custom.css"); 

 c.RoutePrefix = String.Empty; 

}); 

 

app.Run(); 

D. Modifying Project File to be Able to Work with ‘.dll’. 

The .csproj file needs to be updated as follows to let the 
project know that it will include ‘QuantumLib02.dll’ file. 

Content of .csproj file after being updated will be as 
follows. (In this case, getting latest versions of Microsoft. 
Quantum.Simulators and Microsoft.Quantum.QSharp.Core 
via NuGet is required.) 
<!--QuantumLib01Use02\QuantumLib01Use02.csproj--
> 
<Project Sdk="Microsoft.NET.Sdk"> 

  <PropertyGroup> 

 <OutputType>Exe</OutputType> 
 <TargetFramework>net6.0</TargetFramework> 

  </PropertyGroup> 

  <ItemGroup> 

 <PackageReference 

Include="Swashbuckle.AspNetCore" 
Version="6.5.0"/> 

 <PackageReference 

Include="Microsoft.Quantum.Simulators" 

Version="0.28.263081"/> 
 <PackageReference 

Include="Microsoft.Quantum.QSharp.Core" 

Version="0.28.263081"/> 

  </ItemGroup> 

  <ItemGroup> 
 <Reference Include="QuantumLib02"> 
   <HintPath>QuantumLib02.dll</HintPath> 
 </Reference> 
  </ItemGroup> 
</Project> 

E. Results of the Solution 

Web API can work with any platform of client.  In this 
experiment, a well-known API web client named 
“Swagger” is applied.  Usually, plain output from Web API 
can be in JSON text.  Running Web API from the Swagger 
mask can render the result in easy to check format as shown 
in Figure 5 and 6. 

 
PS D:\workroom\LearnQuantumVSCode\QuantumLib01UseWebAPI02> dotnet run 
Building... 
info: Microsoft.Hosting.Lifetime[14] 
   Now listening on: http://localhost:5165 
info: Microsoft.Hosting.Lifetime[0] 
   Application started. Press Ctrl+C to shut down. 
info: Microsoft.Hosting.Lifetime[0] 
   Hosting environment: Development 
info: Microsoft.Hosting.Lifetime[0] 
   Content root path: D:\workroom\LearnQuantumVSCode\QuantumLib01UseWebAPI02 

 

Figure 5. Using Swagger Template to Work with Web API 
 

Figure 6 shows that the input data for entanglement 

Web API are c (control qubit) and t (target qubit).  Values 

for c and t can be either 0 or 1.  Output from this Web API 

is  in string format. 
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Figure 6. Sending Input and Get Output from Web API 

 

HTTP response value from this entanglement Web 

API will be 200 (Success) and outputs of all 4 cases are as 

follows. 

• |00> (control qubit as 0, target qubit as 0) 

"Initial system state: | 00>  |00>: 0.494  |01>: 0  |10>: 0  |11>: 
0.506  Measurements of two qubits matched: 1000, All sum: 1" 

• |01> (control qubit as 0, target qubit as 1) 

"Initial system state: | 01>  |00>: 0  |01>: 0.536  |10>: 0.464  
|11>: 0  Measurements of two qubits matched: 0, All sum: 1" 

• |10> (control qubit as 1, target qubit as 0) 

"Initial system state: | 10>  |00>: 0.508  |01>: 0  |10>: 0  |11>: 
0.492  Measurements of two qubits matched: 1000, All sum: 1" 

• |11> (control qubit as 1, target qubit as 1) 

"Initial system state: | 11>  |00>: 0  |01>: 0.496  |10>: 0.504  
|11>: 0  Measurements of two qubits matched: 0, All sum: 1" 

 

From the above results, there are 2 things that should be 

seen, probabilities and final value of two qubits.   

For probabilities, it is noticeable that sum of all 

collapsing probabilities (all sum) of |00>, |01>, |10> and 

|11> in each case is always 1.  Also, the collapsing 

probability in corresponding case is around 0.5 (50%), like 

the chance of coin flip; this agrees to principle of 

entanglement before collapsing.   

About the final value of two qubits, this is shown in 

‘Measurements of two qubits matched’.  It is from the final 

values of 2 qubits |XX> after passing CNOT gate, as shown 

in Figure 4.  There are 2 cases where values are 1000 which 

is when initial system state is either |00> or |10>.  It is easy 

to understand for |00> case since both initial and final 

qubits are unchanged, so ‘Measurements of two qubits’ is 

always true and be counted.  In another case that initial 

qubits are |10>; as the control qubit is 1, so the target qubit 

will be toggled after passing CNOT gate. With this reason, 

the final qubits will be |11> which makes ‘Measurements 

of two qubits matched’ be true and counted. 

V. CONCLUSION 

This study demonstrated that quantum entanglement 
could be created by applying H (Hadamard) and CNOT 
gates.  Calculation using basic matrix was provided to make 
the topic obvious and simple to understand.  To exhibit how 
to utilize quantum entanglement concepts in IT 
programming, the Q# language was used to create an 
entanglement library (.dll).  This library was then run on 
quantum simulator and communicated with the outside 
world via .NET Web API written in C#.  With the help of 
Web API, various platforms of client such as windows, 
web, mobile or even IoT apps can have channel, through  
simulator, to perform quantum works.  In this case, by 
sending control and target qubits to process quantum 
entanglement computation via Swagger web client, the 
results from the system were matched with the result from 
matrix calculation.  Q# codes in this study can also be run 
on a real quantum computer.  This article benefits anyone 
who is interested in learning the basic concepts of quantum 
entanglement and wants to practice quantum programming 
via simulator in his or her own computer. 
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