
International Journal of Applied Computer Technology and Information Systems : Volume 13, No.2, October 2023 - March 2024

9

Python Libraries for Health Data Analysis: A Review for Apple Silicon

Utharn Buranasaksee*1, Nadaphast Koomklang2, Namooy Panya2, Montri Sangthong3, Ekachai Naowanich1

1Department of Computer Science, Faculty of Science and Technology

2Department of Science, Faculty of Science and Technology
3Department of Mathematics, Faculty of Science and Technology

Rajamangala University of Technology Suvarnabhumi
Nontaburi, Thailand

email: utharn.b@rmutsb.ac.th

Abstract— The paper presents an overview of health

data analysis and the challenges associated with handling
large and complex datasets. Then, the authors highlight the
significance of Python as a popular language for health data
analysis, emphasizing its flexible syntax and efficient
libraries written in C/C++. As the data keep larger, this
raises memory-related issues in current hardware platforms.
While the emergence of the Arm platform, exemplified by
Apple's M1 and its predecessors, the Arm platform is
presented as a potential solution providing that shared
memory and high-speed memory access are built into the
platform. Therefore, many Python libraries for health data
analysis are surveyed and analyzed for compatibility issues
with Apple silicon. Finally, we conclude the migration
checklist for developers transitioning to the Arm platform.

python; health; data; analysis; arm; apple; silicon;

I. INTRODUCTION

Health data analysis is one of the data types that many
data analysts tried to perform exploratory analysis and deep
analysis. Due to its nature that the data size is tremendously
large and has many complex attributes. Many analysts find
that they need a tool that supports this kind of data.

Python language is one of the most popular languages
that have been used for health data analysis [1]. The
language has two main advantages. First, the language has
simple and flexible syntaxes that allow programmers to
easily interact through the code to achieve data analysis
jobs. Second, while providing a simple interface, the
language has related libraries written in C/C++ which are
more efficient than many other programming languages.

Since many of the libraries have been written in C/C++,
they are designed and targeted only to specific platforms.
One of the main platforms that are widely used around the
world is the x64 platform. The x64 platform allows the
system to scale up by having multiple cores and a larger
level 3 (L3) cache, the main memory sticks in the x64
platform are physically located at a far distance from the
CPU. As a result, the memory speed is much lower when
compared to that in GPU as the memory is soldered in the

GPU board. Furthermore, in the GPU domain, the low-level
library that allows complex operation in GPU is largely
dominated by NVIDIA [2]. Therefore, the libraries that are
targeted to GPU based are likely to be developed to support
the CUDA framework. Therefore, most of the libraries are
targeted to both the x64 CPU platform and CUDA-based
GPU platform.

However, as the chip-making technology progress, the
Arm platform that has mainly dominated in mobile phone
market could achieve acceptable performance in data
analysis task. Many data analysis developer finds that Arm
architecture is much more efficient than the x64 platform.
In 2020, Apple Inc. released its silicon chip called the M1
chip [3] which is an Arm platform and is designed to have
a higher clock speed when compared to the other Arm chips
in the market. Therefore, Apple silicon gains more market
share, especially in the mobile market [4].

In a comprehensive data analysis task, the task may
involve machine learning algorithms. These algorithms are
complex and time-consuming. Furthermore, the data in the
machine learning algorithm are repetitively copied,
transformed, and moved in the memory [5]. Therefore, the
algorithm is classified as a memory bottleneck. The
memory speed dominates in the performance outcome
rather than the memory size. Hence, many developers are
required to use CUDA-based GPU to perform those
machine learning tasks.

In a machine learning algorithm, providing more data to
the algorithm usually result in a more effective decision that
the algorithm can make. The set of decisions that the
algorithm can make after feeding the data is called the pre-
trained model. A pre-trained model acts as a set of decisions
that can be stored locally in the disk and used later.
Therefore, a larger size of the pre-trained model usually
leads to a more effective algorithm as more sets of decisions
are gathered.

However, when using the pre-trained model, the model
needs to be stored in the GPU memory to achieve the
optimum performance. This leads to another problem in
CUDA-based GPU which is an in-card memory size.
Regardless of how many CUDA cores the GPU card has,
the performance only holds if the data in a data analysis task

International Journal of Applied Computer Technology and Information Systems : Volume 13, No.2, October 2023 - March 2024

10

only fit into the GPU memory. However, the top-tier
CUDA-based cards in the market currently have only 24GB
of memory. This indicates that the maximum size of the pre-
trained model cannot be exceeded 24GB. In the context of
health data analysis which has a large amount of related
data, the pre-trained model will likely exceed the GPU
memory as we need more accuracy from the model.

While there seems to be a problem in CUDA-based
GPU, it is not the problem in the Arm context. In Arm
architecture, the main memory used by the CPU and GPU
are shared. For instance, the M1 chip and its predecessors
have both CPU and GPU acting as a system-on-chip (SoC).
Furthermore, the memory and the chip are soldered closely
on the same board providing high-performance memory
access from the chip. In addition, the system with the latest
Apple silicon chip called M2 Ultra can have the maximum
of high-speed memory for 192GB [6] which is significantly
greater than those CUDA-based GPUs can achieve at the
same level of system cost. Therefore, the system with the
Apple silicon chip can be used to achieve data analysis task
that requires a tremendous amount of main memory.

In this paper, we first surveyed the Python libraries used
in health data analysis. Then, we analyze the compatibility
issues in both the source code level and library level as
Python is the interpreted language. This is because it has
been 3 years since Apple released its silicon. Many libraries
have adapted their supports to cover the Apple silicon
through the Apple proprietary application programming
language (API) that can access its GPU called Metal.
Finally, we conclude the checklist if the developer wants to
migrate from the x64 and CUDA-based platform to the
Apple silicon arm platform.

II. PYTHON LIBRARIES

In this section, we discuss the Python core and its
libraries that are related to health data analysis about the
dependencies and compatibility status.

A. Python Core

Since Python is one of the most popular languages used
in data analysis, many studies surveyed the libraries used in
data mining and big data analysis[7], machine learning and
artificial intelligence [8], and specific tasks [9]. However,
none of them has reviewed the library and the compatibility
issues with the hardware platform. Therefore, we have
surveyed the most popular libraries that are suitable for
health data analysis. Then, we discuss the purpose of the
library, the support status of the Apple silicon, and its
progress.

For Python itself, Python 3.8.2 and Python 3.91 are the
first two versions that natively support the Apple silicon.
Installing the version stated above causes the performance
to hurt from emulation x64 CPU instructions to arm CPU
instructions.

B. Numpy

Numpy is a Python library for numerical and
mathematical computations. It supports many data

structures including arrays, matrices, and various
mathematical functions, making it as a fundamental library
that many libraries depend on. Numpy started supporting
Python 3.8 from version 1.21.0 [10]. The library is based
on NumPy which starts to support the Apple silicon from
version 1.20.1.

C. Pandas

Pandas is a library that offers data structure and
operations for manipulating numerical tables and time
series. Since Pandas depends on Numpy, Pandas started
supporting the Apple silicon in version 2.12.1 [11]. At first,
developers need to download the source and build it for
themselves. Finally, Pandas has had a universal package
that supports both x64 and arm platforms since January
2022 [12]. Though the library utilizes neither CUDA-based
GPU nor Apple GPU, the library can take full parallelism
in CPU both x64 and arm platforms.

D. Matplotlib and Seaborn

Matplotlib and Seaborn are the libraries that help
visualize data to graphs, charts, plots, and other graph
representations. The Matplotlib started supporting the
Apple silicon in version 3.4. However, the user needs to
install via the conda command only [13]. By version 3.5,
Matplotlib started rolling a universal package that can
support both x64 and arm platforms [14]. Seaborn is the
library that does the same but is built on top of matplotlib to
support more complex graphs. Since Seaborn is a pure
Python library, the compatibility issues were solved once
the upstream package supported the arm platform.

E. Scipy and Scikit-learn

SciPy is a Python library that is used for scientific and
technical computing. It is built on top of NumPy and
provides functionalities for tasks related to data analysis.
SciPy is often used in conjunction with other libraries like
NumPy, Matplotlib, and pandas to perform complex
scientific and mathematical tasks efficiently. SciPy first has
supported the Apple silicon via nightly build since
November 2021. However, the performance in the arm
platform is much slower than that in the x64 platform. The
patch was released in version 1.7.2 on February 2022 [15].

Scikit-learn, which was previously packaged as sklearn,
is a Python module for machine learning built on top of
SciPy. Scikit-learn tries to provide a simple interface to
SciPy for machine learning tasks. Since Scikit-learn
depends on both NumPy and SciPy, the project
compatibility issues were fixed by February 2023 [16].

F. Statmodels

Statsmodels is a Python library that extends the
capability of SciPy for statistical computations including
descriptive statistics, and estimation and inference for
statistical models. The library still has overflow bugs in
Apple silicon [17]. The maintainers plan to address this
issue in the version 0.14 milestone. However, as of now,
version 0.14 was released on 5 May 2023, and the issue
remains open.

International Journal of Applied Computer Technology and Information Systems : Volume 13, No.2, October 2023 - March 2024

11

G. Biopython

Biopython [18] is a set of tools written in Python and
specifically designed for computational biology and
bioinformatics applications. It supports functionalities for
tasks related to DNA, RNA, protein sequences, molecular
structures, phylogenetics, and other biological data analysis
tasks. The status of Apple silicon support is not officially
supported. Though power data analysts can pull the source
code and compile it for themselves, Biopython heavily
depends on the tools that need different compiled versions
including psycopg2 [19] which depends on the Postgresql
database, and mysqlclient [20] which depends on MySQL
database.

H. Pydicom

Pydicom [21] is a Python package for working with
DICOM [22] files. Pydicom allows developers to read,
modify and write DICOM (Digital Imaging and
Communication in Medicine) data. Since the library is
purely written in Python. Pydicom has no compatibility
issue and does not require a separate installing package.

I. Nilearn

Nilearn is a Python library designed for the analysis of
brain imaging data. It specifically focuses on functional
magnetic resonance imaging (fMRI) data [23], which is a
common technique used to record brain activity. Nilearn
itself depends on Intel one API Math Kernel Library (Intel
MKL) which is not available to another platform except the
x64 platform. As a result, data analysis developers cannot
install Nilearn unless they use the x64 platform [24].

Therefore, Nilearn would not support Apple silicon due to
one of its dependencies.

J. Tensorflow

TensorFlow is a machine learning framework
developed by Google. It is designed to facilitate the
development and deployment of machine learning models,
particularly deep learning models, across a variety of
platforms and devices. Tensorflow mainly supports CUDA-
based GPU to achieve its highest performance. Though
Apple releases its Metal plugins to support Tensorflow [25]
and Tensorflow is a large framework, some functions
remain unoptimized for the Apple silicon [26].

K. PyTorch

PyTorch is a deep learning framework developed by
Facebook's AI Research Lab (FAIR). It is designed to
provide a platform for building and training various deep-
learning models. Many developers may choose either
Tensorflow or PyTorch depending on their preferences. To
support the Apple silicon, a new Metal programming
framework called Metal Performance Shaders (MPS) has
been released by Apple [27]. After that, the MPS backend
has been integrated into PyTorch without installing
additional packages [28]. However, the performance of
using MPS lacks behind that of using CUDA-based which
has been developed for many years [29], [30].

From the discussion above, we have concluded a
comparison among the libraries, their dependencies,
compatibility issues, and performance issues in Table 1.

TABLE I. PYTHON LIBRARIES AND THEIR DEPENDENCIES

Library Dependencies Compatibility Issues Performance Issues
Python Core Supports from 3.8 or above No No
NumPy None (Purely written in Python) No No
Pandas NumPy No No
Matplotlib NumPy No No
Seaborn Matplotlib, Pandas No No
SciPy NumPy No No
Scikit-learn NumPy, SciPy No No
Statsmodels NumPy, SciPy Yes No
Biopython None (Purely written in Python) Yes No
Pydicom None (Purely written in Python) No No
Nilearn NumPy, SciPy, Scikit-learn, Matplotlib Yes Yes
TensorFlow NumPy, Google Abseil Yes Yes
PyTorch None (built on C/C++ libraries) Yes Yes

III. CHALLENGES AND LIMITATIONS

Despite 3 years since Apple released its silicon and the
performance claimed by Apple was surprisingly well. In
health data analysis, the Apple silicon still supports only
basic Python libraries. The x64 platform is still required for
a specific use case and advanced machine learning
frameworks; TensorFlow and PyTorch.

However, we can see the progress of the libraries as the
developers try to embrace Apple silicon support these years.

Therefore, it might take some more time for the arm
platform to catch up with x64 and CUDA-based platforms.

IV. CONCLUSION

In conclusion, this paper offers a comprehensive
exploration of the realm of health data analysis. Then, the
authors underscore the pivotal role of Python as a preferred
programming language for health data analysis, drawing
attention to its adaptability in syntax and the efficacy of its
C/C++ libraries. Then, as the volume of data continues to
expand, the paper poignantly highlights the growing

International Journal of Applied Computer Technology and Information Systems : Volume 13, No.2, October 2023 - March 2024

12

concern of memory-related issues within existing hardware
platforms. While the Arm platform has become increasingly
popular among data analysts. The paper illuminates the
Arm platform's potential to address these memory-related
challenges. However, the libraries need to embrace their
codes to support the Arm platform. As of now, only basic
libraries are cross-platform. This is because many advanced
libraries are written in C/C++ which are required to rewrite
the code to utilize and optimize the code for new hardware.
Therefore, in its current state, the Apple silicon may be only
suitable for only beginner of health data analysts. Serious
developers would better remain in a CUDA-based platform.

REFERENCES

[1] K. J. Millman and M. Aivazis, “Python for scientists and

engineers,” Comput Sci Eng, vol. 13, no. 2, pp. 9–12, Mar.
2011, doi: 10.1109/MCSE.2011.36.

[2] A. Ilievski, V. Zdraveski, and M. Gusev, “How CUDA Powers
the Machine Learning Revolution,” 2018 26th
Telecommunications Forum, TELFOR 2018 - Proceedings,
2018, doi: 10.1109/TELFOR.2018.8611982.

[3] Apple Inc., “Apple unleashes M1 - Apple,” Nov. 10, 2020.
https://www.apple.com/newsroom/2020/11/apple-unleashes-
m1/ (accessed Aug. 08, 2023).

[4] D. L. F. Lam, “Study of iPhone’s Big Data, Market Share,
Usage and Their Relationships,” ACM International
Conference Proceeding Series, pp. 7–10, Aug. 2020, doi:
10.1145/3421537.3421542.

[5] X. Wu, P. Brazzle, and S. Cahoon, “Performance and Energy
Consumption of Parallel Machine Learning Algorithms,”
2023.

[6] Apple Inc., “Apple unveils M2 Pro and M2 Max: next-
generation chips for next-level workflows - Apple,” Jan. 17,
2023. https://www.apple.com/newsroom/2023/01/apple-
unveils-m2-pro-and-m2-max-next-generation-chips-for-next-
level-workflows/ (accessed Aug. 08, 2023).

[7] I. Stancin and A. Jovic, “An overview and comparison of free
Python libraries for data mining and big data analysis,” 2019
42nd International Convention on Information and
Communication Technology, Electronics and
Microelectronics, MIPRO 2019 - Proceedings, pp. 977–982,
May 2019, doi: 10.23919/MIPRO.2019.8757088.

[8] S. Raschka, J. Patterson, and C. Nolet, “Machine Learning in
Python: Main Developments and Technology Trends in Data
Science, Machine Learning, and Artificial Intelligence,”
Information 2020, Vol. 11, Page 193, vol. 11, no. 4, p. 193,
Apr. 2020, doi: 10.3390/INFO11040193.

[9] J. Siebert, J. Groß, and C. Schroth, “A systematic review of
Python packages for time series analysis,” Apr. 2021,
Accessed: Aug. 08, 2023. [Online]. Available:
https://arxiv.org/abs/2104.07406v2

[10] NumPy Developers, “NumPy 1.21.1 Release Notes — NumPy
v2.0.dev0 Manual.” https://numpy.org/devdocs/release/1.21.1-
notes.html (accessed Aug. 09, 2023).

[11] Github Inc., “Can’t install Pandas on Mac M1 · Issue #40611 ·
pandas-dev/pandas,” Mar. 24, 2021.
https://github.com/pandas-dev/pandas/issues/40611 (accessed
Aug. 09, 2023).

[12] Github Inc., “ENH: Please provide ‘universal2’ wheels for
macOS · Issue #39053 · pandas-dev/pandas,” Jan. 21, 2022.
https://github.com/pandas-dev/pandas/issues/39053 (accessed
Aug. 09, 2023).

[13] Github Inc., “matplotlib 3.4.2 using on M1 Mac, with python
3.9.4 · Issue #20261 · matplotlib/matplotlib,” May 20, 2021.

https://github.com/matplotlib/matplotlib/issues/20261
(accessed Aug. 09, 2023).

[14] Github Inc., “Build wheels for Apple Silicon. by QuLogic ·
Pull Request #20970 · matplotlib/matplotlib,” Sep. 02, 2021.
https://github.com/matplotlib/matplotlib/pull/20970 (accessed
Aug. 09, 2023).

[15] “scipy · PyPI.” https://pypi.org/project/scipy/1.7.3/ (accessed
Aug. 09, 2023).

[16] Github Inc., “Unable to install dependencies on Mac M1 ·
Issue #22 · GokuMohandas/mlops-course,” Feb. 13, 2023.
https://github.com/GokuMohandas/mlops-course/issues/22
(accessed Aug. 09, 2023).

[17] Github Inc., “BUG: optimize.brentq triggers an overflow error
· Issue #14851 · scipy/scipy,” Oct. 14, 2021.
https://github.com/scipy/scipy/issues/14851 (accessed Aug.
09, 2023).

[18] P. J. A. Cock et al., “Biopython: Freely available Python tools
for computational molecular biology and bioinformatics,”
Bioinformatics, vol. 25, no. 11, pp. 1422–1423, Jun. 2009, doi:
10.1093/bioinformatics/btp163.

[19] F. Di Gregorio and D. Varrazzo, “Psycopg – PostgreSQL
database adapter for Python — Psycopg 2.9.7 documentation.”
https://www.psycopg.org/docs/ (accessed Aug. 09, 2023).

[20] Github Inc., “PyMySQL/mysqlclient: MySQL database
connector for Python (with Python 3 support).”
https://github.com/PyMySQL/mysqlclient (accessed Aug. 09,
2023).

[21] Github Inc., “pydicom/pydicom: Read, modify and write
DICOM files with python code.”
https://github.com/pydicom/pydicom (accessed Aug. 09,
2023).

[22] Mislav. Grgić, Sonja. Grgić, Institute of Electrical and
Electronics Engineers. Region 8., Institute of Electrical and
Electronics Engineers. Croatia Section., and S. and I.
Processing. European Association for Speech, "Proceedings
ELMAR-2008 : 50th International Symposium ELMAR-2008,
10-12 September 2008, Zadar, Croatia," Croatian Society
Electronics in Marine, 2008, p. 654.

[23] R. A. Poldrack et al., “Towards open sharing of task-based
fMRI data: The OpenfMRI project,” Front Neuroinform, vol.
7, no. JUNE, Jun. 2013, doi: 10.3389/FNINF.2013.00012.

[24] Github Inc., “[BUG] cannot install mkl (doc dependency) on
Mac M1 Sillicon chip · Issue #3849 · nilearn/nilearn,” Jul. 20,
2023. https://github.com/nilearn/nilearn/issues/3849 (accessed
Aug. 09, 2023).

[25] Apple Inc., “Tensorflow Plugin - Metal - Apple Developer.”
https://developer.apple.com/metal/tensorflow-plugin/
(accessed Aug. 09, 2023).

[26] Github Inc., “Lack of Documentation for GPU Use, Especially
in Metal GPUs in MacBook M1, M1 Max and M2 Chips ·
Issue #61092 · tensorflow/tensorflow,” Jun. 27, 2023.
https://github.com/tensorflow/tensorflow/issues/61092
(accessed Aug. 09, 2023).

[27] Apple Inc., “Accelerated PyTorch training on Mac - Metal -
Apple Developer.” https://developer.apple.com/metal/pytorch/
(accessed Aug. 09, 2023).

[28] The Linux Foundation, “MPS backend — PyTorch 2.0
documentation.”
https://pytorch.org/docs/stable/notes/mps.html (accessed Aug.
09, 2023).

[29] Lambda Inc., “GPU Benchmarks for Deep Learning |
Lambda.” https://lambdalabs.com/gpu-benchmarks (accessed
Aug. 09, 2023).

[30] The Linux Foundation, “Introducing Accelerated PyTorch
Training on Mac | PyTorch.”
https://pytorch.org/blog/introducing-accelerated-pytorch-
training-on-mac/ (accessed Aug. 09, 2023).

