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Abstract— The paper presents an overview of health 

data analysis and the challenges associated with handling 
large and complex datasets. Then, the authors highlight the 
significance of Python as a popular language for health data 
analysis, emphasizing its flexible syntax and efficient 
libraries written in C/C++. As the data keep larger, this 
raises memory-related issues in current hardware platforms. 
While the emergence of the Arm platform, exemplified by 
Apple's M1 and its predecessors, the Arm platform is 
presented as a potential solution providing that shared 
memory and high-speed memory access are built into the 
platform. Therefore, many Python libraries for health data 
analysis are surveyed and analyzed for compatibility issues 
with Apple silicon. Finally, we conclude the migration 
checklist for developers transitioning to the Arm platform.  
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I.  INTRODUCTION 

Health data analysis is one of the data types that many 
data analysts tried to perform exploratory analysis and deep 
analysis. Due to its nature that the data size is tremendously 
large and has many complex attributes. Many analysts find 
that they need a tool that supports this kind of data.  

Python language is one of the most popular languages 
that have been used for health data analysis [1]. The 
language has two main advantages. First, the language has 
simple and flexible syntaxes that allow programmers to 
easily interact through the code to achieve data analysis 
jobs. Second, while providing a simple interface, the 
language has related libraries written in C/C++ which are 
more efficient than many other programming languages.  

Since many of the libraries have been written in C/C++,  
they are designed and targeted only to specific platforms. 
One of the main platforms that are widely used around the 
world is the x64 platform. The x64 platform allows the 
system to scale up by having multiple cores and a larger 
level 3 (L3) cache, the main memory sticks in the x64 
platform are physically located at a far distance from the 
CPU. As a result, the memory speed is much lower when 
compared to that in GPU as the memory is soldered in the 

GPU board. Furthermore, in the GPU domain, the low-level 
library that allows complex operation in GPU is largely 
dominated by NVIDIA [2]. Therefore, the libraries that are 
targeted to GPU based are likely to be developed to support 
the CUDA framework. Therefore, most of the libraries are 
targeted to both the x64 CPU platform and CUDA-based 
GPU platform. 

However, as the chip-making technology progress, the 
Arm platform that has mainly dominated in mobile phone 
market could achieve acceptable performance in data 
analysis task. Many data analysis developer finds that Arm 
architecture is much more efficient than the x64 platform. 
In 2020, Apple Inc. released its silicon chip called the M1 
chip [3] which is an Arm platform and is designed to have 
a higher clock speed when compared to the other Arm chips 
in the market. Therefore, Apple silicon gains more market 
share, especially in the mobile market [4].  

In a comprehensive data analysis task, the task may 
involve machine learning algorithms. These algorithms are 
complex and time-consuming. Furthermore, the data in the 
machine learning algorithm are repetitively copied, 
transformed, and moved in the memory [5]. Therefore, the 
algorithm is classified as a memory bottleneck. The 
memory speed dominates in the performance outcome 
rather than the memory size. Hence, many developers are 
required to use CUDA-based GPU to perform those 
machine learning tasks. 

In a machine learning algorithm, providing more data to 
the algorithm usually result in a more effective decision that 
the algorithm can make. The set of decisions that the 
algorithm can make after feeding the data is called the pre-
trained model. A pre-trained model acts as a set of decisions 
that can be stored locally in the disk and used later. 
Therefore, a larger size of the pre-trained model usually 
leads to a more effective algorithm as more sets of decisions 
are gathered. 

However, when using the pre-trained model, the model 
needs to be stored in the GPU memory to achieve the 
optimum performance. This leads to another problem in 
CUDA-based GPU which is an in-card memory size. 
Regardless of how many CUDA cores the GPU card has, 
the performance only holds if the data in a data analysis task 
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only fit into the GPU memory. However, the top-tier 
CUDA-based cards in the market currently have only 24GB 
of memory. This indicates that the maximum size of the pre-
trained model cannot be exceeded 24GB. In the context of 
health data analysis which has a large amount of related 
data, the pre-trained model will likely exceed the GPU 
memory as we need more accuracy from the model. 

While there seems to be a problem in CUDA-based 
GPU, it is not the problem in the Arm context. In Arm 
architecture, the main memory used by the CPU and GPU 
are shared. For instance, the M1 chip and its predecessors 
have both CPU and GPU acting as a system-on-chip (SoC). 
Furthermore, the memory and the chip are soldered closely 
on the same board providing high-performance memory 
access from the chip. In addition, the system with the latest 
Apple silicon chip called M2 Ultra can have the maximum 
of high-speed memory for 192GB [6]  which is significantly 
greater than those CUDA-based GPUs can achieve at the 
same level of system cost. Therefore, the system with the 
Apple silicon chip can be used to achieve data analysis task 
that requires a tremendous amount of main memory. 

In this paper, we first surveyed the Python libraries used 
in health data analysis. Then, we analyze the compatibility 
issues in both the source code level and library level as 
Python is the interpreted language. This is because it has 
been 3 years since Apple released its silicon. Many libraries 
have adapted their supports to cover the Apple silicon 
through the Apple proprietary application programming 
language (API) that can access its GPU called Metal. 
Finally, we conclude the checklist if the developer wants to 
migrate from the x64 and CUDA-based platform to the 
Apple silicon arm platform.  
 

II. PYTHON LIBRARIES 

In this section, we discuss the Python core and its 
libraries that are related to health data analysis about the 
dependencies and compatibility status. 

A. Python Core 

Since Python is one of the most popular languages used 
in data analysis, many studies surveyed the libraries used in 
data mining and big data analysis[7], machine learning and 
artificial intelligence [8], and specific tasks [9].  However, 
none of them has reviewed the library and the compatibility 
issues with the hardware platform. Therefore, we have 
surveyed the most popular libraries that are suitable for 
health data analysis. Then, we discuss the purpose of the 
library, the support status of the Apple silicon, and its 
progress. 

For Python itself, Python 3.8.2 and Python 3.91 are the 
first two versions that natively support the Apple silicon. 
Installing the version stated above causes the performance 
to hurt from emulation x64 CPU instructions to arm CPU 
instructions.   

B. Numpy 

Numpy is a Python library for numerical and 
mathematical computations. It supports many data 

structures including arrays, matrices, and various 
mathematical functions, making it as a fundamental library 
that many libraries depend on. Numpy started supporting 
Python 3.8 from version 1.21.0 [10].  The library is based 
on NumPy which starts to support the Apple silicon from 
version 1.20.1. 

C. Pandas 

Pandas is a library that offers data structure and 
operations for manipulating numerical tables and time 
series. Since Pandas depends on Numpy, Pandas started 
supporting the Apple silicon in version 2.12.1 [11]. At first, 
developers need to download the source and build it for 
themselves. Finally, Pandas has had a universal package 
that supports both x64 and arm platforms since January 
2022 [12]. Though the library utilizes neither CUDA-based 
GPU nor Apple GPU, the library can take full parallelism 
in CPU both x64 and arm platforms. 

D. Matplotlib and Seaborn 

Matplotlib and Seaborn are the libraries that help 
visualize data to graphs, charts, plots, and other graph 
representations. The Matplotlib started supporting the 
Apple silicon in version 3.4. However, the user needs to 
install via the conda command only [13]. By version 3.5, 
Matplotlib started rolling a universal package that can 
support both x64 and arm platforms [14].  Seaborn is the 
library that does the same but is built on top of matplotlib to 
support more complex graphs. Since Seaborn is a pure 
Python library, the compatibility issues were solved once 
the upstream package supported the arm platform. 

E. Scipy and Scikit-learn 

SciPy is a Python library that is used for scientific and 
technical computing. It is built on top of NumPy and 
provides functionalities for tasks related to data analysis. 
SciPy is often used in conjunction with other libraries like 
NumPy, Matplotlib, and pandas to perform complex 
scientific and mathematical tasks efficiently. SciPy first has 
supported the Apple silicon via nightly build since 
November 2021. However, the performance in the arm 
platform is much slower than that in the x64 platform. The 
patch was released in version 1.7.2 on February 2022 [15]. 

Scikit-learn, which was previously packaged as sklearn, 
is a Python module for machine learning built on top of 
SciPy. Scikit-learn tries to provide a simple interface to 
SciPy for machine learning tasks. Since Scikit-learn 
depends on both NumPy and SciPy, the project 
compatibility issues were fixed by February 2023 [16]. 

F. Statmodels 

Statsmodels is a Python library that extends the 
capability of SciPy for statistical computations including 
descriptive statistics, and estimation and inference for 
statistical models. The library still has overflow bugs in 
Apple silicon [17]. The maintainers plan to address this 
issue in the version 0.14 milestone. However, as of now, 
version 0.14 was released on 5 May 2023, and the issue 
remains open.  
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G. Biopython 

Biopython [18] is a set of tools written in Python and 
specifically designed for computational biology and 
bioinformatics applications. It supports functionalities for 
tasks related to DNA, RNA, protein sequences, molecular 
structures, phylogenetics, and other biological data analysis 
tasks. The status of Apple silicon support is not officially 
supported. Though power data analysts can pull the source 
code and compile it for themselves, Biopython heavily 
depends on the tools that need different compiled versions 
including psycopg2 [19] which depends on the Postgresql 
database, and mysqlclient [20] which depends on MySQL 
database.  

H. Pydicom 

Pydicom [21] is a Python package for working with 
DICOM [22] files. Pydicom allows developers to read, 
modify and write DICOM (Digital Imaging and 
Communication in Medicine) data. Since the library is 
purely written in Python. Pydicom has no compatibility 
issue and does not require a separate installing package. 

I. Nilearn 

Nilearn is a Python library designed for the analysis of 
brain imaging data. It specifically focuses on functional 
magnetic resonance imaging (fMRI) data [23], which is a 
common technique used to record brain activity. Nilearn 
itself depends on Intel one API Math Kernel Library (Intel 
MKL) which is not available to another platform except the 
x64 platform. As a result, data analysis developers cannot 
install Nilearn unless they use the x64 platform [24]. 

Therefore, Nilearn would not support Apple silicon due to 
one of its dependencies. 

J. Tensorflow 

TensorFlow is a machine learning framework 
developed by Google. It is designed to facilitate the 
development and deployment of machine learning models, 
particularly deep learning models, across a variety of 
platforms and devices. Tensorflow mainly supports CUDA-
based GPU to achieve its highest performance. Though 
Apple releases its Metal plugins to support Tensorflow [25] 
and Tensorflow is a large framework, some functions 
remain unoptimized for the Apple silicon [26]. 

K. PyTorch 

PyTorch is a deep learning framework developed by 
Facebook's AI Research Lab (FAIR). It is designed to 
provide a platform for building and training various deep-
learning models. Many developers may choose either 
Tensorflow or PyTorch depending on their preferences. To 
support the Apple silicon, a new Metal programming 
framework called Metal Performance Shaders (MPS) has 
been released by Apple [27]. After that, the MPS backend 
has been integrated into PyTorch without installing 
additional packages [28]. However, the performance of 
using MPS lacks behind that of using CUDA-based which 
has been developed for many years [29], [30]. 

From the discussion above, we have concluded a 
comparison among the libraries, their dependencies, 
compatibility issues, and performance issues in Table 1. 

TABLE I.  PYTHON LIBRARIES AND THEIR DEPENDENCIES 

Library Dependencies Compatibility Issues Performance Issues 
Python Core Supports from 3.8 or above No No 
NumPy None (Purely written in Python) No No 
Pandas NumPy No No 
Matplotlib NumPy No No 
Seaborn Matplotlib, Pandas No No 
SciPy NumPy No No 
Scikit-learn NumPy, SciPy No No 
Statsmodels NumPy, SciPy Yes No 
Biopython None (Purely written in Python) Yes No 
Pydicom None (Purely written in Python) No No 
Nilearn NumPy, SciPy, Scikit-learn, Matplotlib Yes Yes 
TensorFlow NumPy, Google Abseil Yes Yes 
PyTorch None (built on C/C++ libraries) Yes Yes 

  

III. CHALLENGES AND LIMITATIONS 

Despite 3 years since Apple released its silicon and the 
performance claimed by Apple was surprisingly well. In 
health data analysis, the Apple silicon still supports only 
basic Python libraries. The x64 platform is still required for 
a specific use case and advanced machine learning 
frameworks; TensorFlow and PyTorch.  

However, we can see the progress of the libraries as the 
developers try to embrace Apple silicon support these years. 

Therefore, it might take some more time for the arm 
platform to catch up with x64 and CUDA-based platforms. 

 

IV. CONCLUSION 

In conclusion, this paper offers a comprehensive 
exploration of the realm of health data analysis. Then, the 
authors underscore the pivotal role of Python as a preferred 
programming language for health data analysis, drawing 
attention to its adaptability in syntax and the efficacy of its 
C/C++ libraries. Then, as the volume of data continues to 
expand, the paper poignantly highlights the growing 
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concern of memory-related issues within existing hardware 
platforms. While the Arm platform has become increasingly 
popular among data analysts. The paper illuminates the 
Arm platform's potential to address these memory-related 
challenges. However, the libraries need to embrace their 
codes to support the Arm platform. As of now, only basic 
libraries are cross-platform. This is because many advanced 
libraries are written in C/C++ which are required to rewrite 
the code to utilize and optimize the code for new hardware. 
Therefore, in its current state, the Apple silicon may be only 
suitable for only beginner of health data analysts. Serious 
developers would better remain in a CUDA-based platform. 
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