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Abstract— Artificial intelligence has been utilized in 

various fields to drive modern innovations. For instance, in 

agriculture, computer vision has been employed to identify 

plant diseases by analyzing images of plant leaves. While 

state-of-the-art models can achieve high accuracy, their 

practical application is still limited. These models are 

specifically designed to detect diseases from close-up 

images of leaves. However, in reality, images of plants of 

interest, such as those captured by fertilizer spraying 

drones and security cameras, are often scenic and contain 

multiple trees, each with numerous leaves. Consequently, 

the extracted leaf images have significantly lower 

resolutions compared to the ones used in the models. In this 

study, we investigated the impact of this trade-off between 

the performance of plant disease detection models and 

input image resolution. The relationship between image 

dimensions and accuracy was investigated. The results 

showed that halving image width resulted in approximately 

4.35% decrease in accuracy. 
Keywords: computer vision; image classification; 

convolutional neural networks; plant disease detection 

I.  INTRODUCTION 

Agriculture, from the household level to the industry 
level, has greatly benefited from modern technologies. 
Science and engineering have been integrated into new 
agricultural innovations. New innovations are invented 
every year as new technologies emerge and become more 
affordable. Many such inventions are now widely used, 
such as automated greenhouses [1], apple harvesting 
machines [2], and fertilizer drones [3]. With the significant 
advancements in artificial intelligence performance and 
cost, computer vision has also been employed for detecting 
leaf diseases, as demonstrated in [4]. In that study, 
convolutional neural networks (CNNs) were trained to 
identify plant species and diseases. Specifically, more than 
50,000 leaf images from 14 different species, whether 
healthy or diseased, were used to train the models. The best 
result from that study showed that the model could 
accurately identify the specific type of leaf and the name of 
the disease (or determine if it was healthy) with an 
accuracy of 99.35%. The dataset was published in [5] 

under the Creative Commons license, allowing any 
interested researchers to use it freely.  

The accuracy from [5] made it seemed like this was a 
solved problem. However, in practice, these models were 
far from immediately useful due to the difference between 
the images used to train the models and leaf images 
collected in the real-life scenarios. The dataset from [5] 
consisted of close-up images of leaves, where a single 
image only showed a single leaf on a solid-color 
background, taken close to the normal angle (90 degree), 
as shown in Fig. 1. However, in real life scenarios, such 
images were very labor-intensive and expensive to collect. 
There were leaf images that were easy and cheap to collect 
such as images from security cameras and drones. 
However, more often than not, such images were taken far 
from trees and leaves and contained dozens to hundreds of 
leaves in a single image. In addition, such images would 
never have a solid-color background and leaves being at 
non-normal angles more often than not. Even if each leaf 
was extracted, the resolution would be much smaller than 
that of images used to train the model in [4], which were 
all of 256x256 pixels, as shown in Fig. 2. 

 

   

Figure 1.  Examples of images from [5]: healthy apple leaf (left) and 

apple leaf with apple scab (right) 

 

Figure 2.  Leaf images resolution comparison from a sample image 
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In the field of computer vision, it was generally 
accepted that there was a trade-off between model 
performance and image resolution (within certain 
thresholds). For leaf disease detection, knowing this trade-
off allowed for better cost-performance analyses and 
decision making. For example, farm managers could plan 
drone routes such that leaf images from drone cameras are 
of sufficient resolution to achieve acceptable disease 
detection accuracy, public park caretakers could move or 
direct security cameras such that it had enough resolution 
to detect plant diseases or pests that could cause pandemic, 
and notify appropriate parties. 

Thus, in this study, models were constructed to confirm 
the existence of the aforementioned trade-off, as well as 
estimating the numerical impact of the resolution to the 
plant disease detection models. 

II. RELATED WORKS 

Convolutional neural networks (CNNs) [6] are a 
machine learning technique that has been widely used, 
especially for image classification, including protected 
avian species detection [7], wildlife species identification 
in national parks in Russia [8], and, as mentioned earlier, 
leaf disease detection [4]. 

CNNs, like most neural networks, require a large 
dataset and extended training time to sufficiently detect 
complex patterns. Countless techniques have been 
introduced to mitigate this issue. For instance, transfer 
learning [9] involves reusing the inner layers of large pre-
trained models as a foundation, with little to no fine-tuning, 
and focusing training efforts on only the final decision 
layer. In the case of CNNs, these inner layers generally 
capture common, less complex patterns in images, such as 
straight lines and curves. By transferring such patterns and 
knowledge, new models do not need to be trained from 
scratch, thereby necessitating less training data and time. 
Several large pre-trained CNN models are well-known and 
widely used, such as EfficientNet [10], MobileNet [11], 
and ConvNeXt [12]. 

III. METHODOLOGY 

A. Dataset 

The dataset utilized in this study was the PlantVillage 
Dataset [5], comprising over 50,000 leaf images 
encompassing both healthy and diseased specimens. These 
images span 14 distinct plant species, namely apple, 
blueberry, cherry, corn, grape, orange, peach, bell pepper, 
potato, raspberry, soybean, squash, strawberry, and tomato. 
The number of diseases contained within the dataset varies 
across species; some contain only images of healthy leaves 
(e.g. squash), while others encompass 9 different diseases 
in addition to healthy samples (e.g. tomato), resulting in a 
total of 26 diseases across all species represented in the 
dataset. 

In previous studies utilizing [5], the dependent 
variables predominantly focused on leaf species and 
disease names. However, in this study, the analysis was 
narrowed down to discerning whether the leaves were 

diseased or healthy. This approach was adopted to enable 
the constructed models to identify common visual patterns 
and characteristics distinguishing diseased leaves from 
healthy ones. The aim was to establish patterns that could 
be extrapolated to previously unseen plant species and 
diseases. 

B. Data Preprocessing 

To investigate the trade-off between resolution and 
performance, the original dataset was transformed into five 
new image sets of varying resolutions: 8x8, 16x16, 32x32, 
64x64, and 128x128 pixels. These resolutions, combined 
with the original 256x256-pixel dataset, constituted the six 
image sets utilized in this study. 

Given that the primary objective was to develop a 
model capable of detecting diseased versus healthy leaves 
in a general context, only species providing both diseased 
and healthy leaf images were considered for inclusion in 
the image sets. Specifically, the following species were 
included: apple, cherry, corn, grape, peach, bell pepper, 
potato, strawberry, and tomato—encompassing 9 out of the 
total 14 species. 

Furthermore, each image set was randomly divided into 
training and test subsets, maintaining a 50:50 ratio without 
replacement. Sampling was executed in a manner where an 
identical image from different image sets (with varying 
resolutions) was consistently placed either within the 
training set for all image sets or within the test set for all 
image sets. This approach was adopted to guarantee 
equitable comparisons of models across the various image 
sets and to minimize potential biases in trade-off 
measurements. Additionally, during the training phase, 
20% of the training set was allocated for the validation 
process. 

C. Convolutional Neural Networks and Transfer 
Learning 

Convolutional neural network (CNN) models have 
demonstrated remarkable accuracy in this context, as 
observed in [4]. This study similarly adopted an approach 
involving transfer learning, leveraging a large pre-trained 
CNN model for model training. 

To be specific, the CNN models were trained using 
Keras, an open-source Python library designed for neural 
networks and deep learning, built upon the Tensorflow 
framework. The chosen pre-trained CNN model for 
transfer learning was EfficientNet [10], renowned for its 
efficiency in transfer learning scenarios. The precise model 
variant utilized was efficientnetv2-s-21k-ft1k, configured 
with an input image resolution of 384x384 pixels. 

In the investigation of the resolution-performance 
trade-off, six distinct CNN models were trained, each 
corresponding to one of the six image sets. Subsequently, 
every model was evaluated on two subsets: the test subset 
sharing the resolution of its training subset, and the test 
subset aligning with the original resolution. The evaluation 
encompassed measurements of model accuracy, loss, and 
training time. 
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D. Handling Overfitting 

In machine learning, the hallmark of a robust model lies 
in its ability to perform effectively on novel, unseen data, 
also known as generalization. However, it is not 
uncommon to encounter models that excel on the training 
set yet falter when presented with unfamiliar data. This 
predicament, where a model molds itself excessively to the 
training data, diminishing its capacity to generalize, is 
termed overfitting [13]. Artificial neural networks, 
including CNNs, are often susceptible to overfitting due to 
their substantial number of underlying parameters. 
Consequently, various strategies have been devised to 
mitigate overfitting. In this study, two approaches were 
employed: data augmentation and dropout, both using 
Keras, culminating in the final CNN model depicted in Fig. 
3. 

 

Figure 3.  CNN model structure for plant disease detection 

1) Data Augmentation 
Data augmentation is a technique aimed at enhancing 

generalizability by modifying training data in a manner that 
preserves its correctness, significance, or patterns. The 
specific modifications vary depending on the nature of the 
data and the patterns to be retained. For instance, in the 
context of leaf disease detection, the label 
(diseased/healthy) remains unaffected when an image is 
horizontally flipped, rendering it a valid data augmentation 
technique. Within this study, training data augmentation 
encompassed horizontal flipping, image rotation, image 
translation, and image zooming.  

2) Dropout 
In neural network applications, many researchers 

theorized that overfitting may stem from nodes 
memorizing the training data or its distinctive 
characteristics. Dropout constitutes a strategy to counteract 

this behavior. During the training phase, instead of 
engaging all nodes across all layers, only a random subset 
is employed, while the remainder are "dropped out" of the 
network. In each subsequent weight update cycle, a distinct 
subset is chosen randomly for use versus dropout. This 
technique, known as dropout, compels the network to 
internalize broader patterns, as memorizing specific details 
becomes counterproductive when the corresponding nodes 
are subject to dropout [14]. 

IV. RESULT 

The outcomes of training six distinct CNN models on 
six different image sets validated the resolution-
performance trade-off, as illustrated in Table I. 

TABLE I.  THE TRAINING SET PERFORMANCE OF MODELS TRAINED ON 6 

IMAGE SETS OF DIFFERENT RESOLUTIONS 

Image 
Resolution 

(pixels) 

Training 
Time 

(seconds) 

Training Set Validation Set 

Loss Accuracy Loss Accuracy 

8x8 785.526 0.249 0.775 0.148 0.822 

16x16 790.547 0.317 0.790 0.182 0.848 

32x32 799.512 0.219 0.850 0.194 0.873 

64x64 790.858 0.100 0.897 0.052 0.917 

128x128 798.838 0.065 0.926 0.041 0.939 

256x256 782.012 0.042 0.948 0.025 0.968 

 
Subsequently, these models were assessed on both the 

test subset of the same resolution as their corresponding 
training subsets (Tab. II) and the test subset of the original 
resolution (Tab. III), with evaluations conducted for each 
plant species and overall accuracy. Notably, all models 
exhibited superior performance compared to the baseline 
accuracy (majority class = 72.2%). However, an exception 
was observed in the case of the 16x16 model, which 
displayed anomalously low accuracy for potato images at 
16x16 pixels, and both potato and tomato images at 
256x256 pixels (orange highlight in Tab. II and Tab. III) 

 

TABLE II.  MODEL ACCURACY WHEN TESTED ON THE TEST SUBSET OF THE SAME RESOLUTION AS THE TRAINING SUBSET 

 

 

Model 
Accuracy 

Strawberry Tomato Potato Cherry Corn Peach Apple  Grape Bell Pepper Overall 

8x8 0.754 0.860 0.908 0.689 0.843 0.897 0.588 0.826 0.628 0.812 

16x16 0.837 0.832 0.658 0.895 0.833 0.900 0.626 0.877 0.741 0.813 

32x32 0.711 0.913 0.948 0.962 0.717 0.891 0.592 0.908 0.745 0.853 

64x64 0.869 0.929 0.970 0.996 0.943 0.945 0.812 0.932 0.822 0.919 

128x128 0.989 0.953 0.980 0.989 0.979 0.933 0.943 0.993 0.861 0.956 

256x256 0.997 0.967 0.991 0.994 0.970 0.933 0.965 1.000 0.897 0.968 

Data 
Augment- 

ation 
EfficientNet Dropout Dense 

Prediction 
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TABLE III.  MODEL ACCURACY WHEN TESTED ON THE TEST SUBSET OF THE ORIGINAL 256X256 RESOLUTION 

 
Interestingly, models trained using lower resolutions 

performed substantially worse on cherry leaf images of 
original resolution than on lower resolution (pink in Tab. 
III). 

Excluding the aforementioned trade-off, the resolution-
performance trade-off could be observed across plant 
species, excluding the aforementioned anomaly. 

To uncover the trend within the trade-off, the model 
accuracy was subjected to linear regression analysis across 
four distinct scales of input resolution: 1) image width, 
which was identical to height, given square input images 
(𝑤𝑖𝑑𝑡ℎ), 2) image area (𝑎𝑟𝑒𝑎), 3) log based 2 of the image 
width (log2 𝑤𝑖𝑑𝑡ℎ), and 4) log based 2 of log based 2 of 
the image width (log2 log2 𝑤𝑖𝑑𝑡ℎ). This exploration 
yielded four linear regression equations, each accompanied 
by corresponding 𝑅2 values of 0.333370, 0.230693, 
0.422520, and 0.407801, respectively (Fig. 4). Among 
these equations, the linear regression model with 
log2 𝑤𝑖𝑑𝑡ℎ demonstrated the best fit, characterized by a 
coefficient (m) of 0.04349 and a y-intercept (c) of 0.63361, 
as shown in equation (1). 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.04349 (log2 𝑤𝑖𝑑𝑡ℎ) + 0.63361    (1)  

The base-2 logarithm signifies that alterations in width 
are evaluated within the context of powers of two i.e. 
doubling and halving. For instance, with a width of 32, the 
model projects an accuracy of 0.85106. Upon halving the 
width to 16, the accuracy diminishes to 0.80757, marking 
a decrement of 0.04349. Conversely, when the width is 
doubled to 64, the accuracy elevates to 0.89455, 
concurrently representing a decrease of 0.04349. 

V. DISCUSSION AND FUTURE WORKS 

The results vividly illustrate a robust positive 
correlation between image resolution and model accuracy, 
thereby confirming the presence of a resolution-
performance trade-off within CNN models designed for 
plant disease detection. Specifically, considering square 
leaf images, a reduction of 1 in log2 𝑤𝑖𝑑𝑡ℎ  was linked to 
a decrease of 0.043489 in accuracy. In simpler terms, if the 
image width is halved (resulting in a quartered area), the 
accuracy would diminish by approximately 4.35%. 

 

 

 
 

Figure 4.  Linear regression comparison between different scales of resolution and accuracy: 1) 𝑤𝑖𝑑𝑡ℎ (top left), 2) 𝑎𝑟𝑒𝑎 (top right),  

3) log2 𝑤𝑖𝑑𝑡ℎ (bottom left), and 4) log2 log2 𝑤𝑖𝑑𝑡ℎ (bottom right) 
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Model 
Accuracy 

Strawberry Tomato Potato Cherry Corn Peach Apple  Grape Bell Pepper Overall 

8x8 0.674 0.887 0.933 0.468 0.738 0.887 0.485 0.894 0.545 0.794 

16x16 0.711 0.480 0.268 0.513 0.683 0.811 0.514 0.890 0.586 0.572 

32x32 0.735 0.755 0.926 0.481 0.834 0.752 0.817 0.927 0.936 0.792 

64x64 0.837 0.927 0.985 0.926 0.855 0.968 0.968 0.983 0.975 0.934 

128x128 1.000 0.953 0.989 0.956 0.973 0.960 0.960 0.998 0.979 0.966 

256x256 1.000 0.953 0.989 0.956 0.973 0.960 0.960 0.998 0.979 0.966 
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Addressing the anomaly observed within the 16x16 

model—where accuracy significantly dropped for tomato 
and potato images—it could potentially be attributed to 
overfitting or the emergence of image artifacts accentuated 
as resolutions declined. Further investigation is warranted, 
involving supplementary data augmentation techniques 
such as brightness/darkness adjustments and grayscale 
conversions. 

Furthermore, for a comprehensive understanding, this 
trade-off should be subjected to further scrutiny using 
images derived from real-world scenarios, including those 
captured by security cameras and agricultural drones. Such 
images typically present a higher degree of complexity, 
encompassing elements like multiple leaves, overlapping 
foliage, non-square formats, leaves captured from non-
normal angles, and lens imperfections. All of these 
variables hold the potential to exert considerable influence 
on model accuracy and, in turn, on the rate of accuracy 
decline as resolution diminishes. 
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