
 Task Allocation for Computer Service Provider
by Optimal CPU Usage Consideration

Somchai Prakancharoen

Department of Computer Science and Information

Faculty of Applied Science King Mongkut’s University of Technology North Bangkok

1518 Pracharaj-1 Bangsue Bangkok Thailand

spk@kmutnb.ac.t

 Abstract—Task allocation algorithm in distributed computing
system, such as cloud computing, are now critical issue. Service
manager: SM has to consider which Service provider: SP is
suitable to service data processing or even data storage from
Service request: SR. Normally, SP has to handle its own tasks
thus new allocated task should not consume more CPU’s work
load status which could make SP decrease its base performance.
This research objective is to invent the allocation algorithm by
study status of SP’s CPU usages. The less CPU performance
usages: LCU of each SP were specified. The status of each SP’s
LCU should be used to represent its status which will be a
criteria for making a decision by SM whether this SP is suitable
to service request from SR or not. The start time and finish time
of SR’s task was defined by maximized Lagrange transformation
function. The experiment is presented in practical calculation. It
could point out that some request of SR is more suitable sending
to which SP.

 Keywords—Task allocation algorithm; Distributed system;
Lagrangetransformation.

I. INTRODUCTION
Service manager: SM is a server which responsible in

decision making of sending task from Service request: SR,
which was initiated from a specific client, to process in suitable
Service provider: SP. There are many designed algorithm were
used to help SM in making a good decision. A good algorithm
should utilized CPU, RAM or even Data storage of SP
facilities usage. The allocated task may not tightly disturb or
corrupt SP’s handled task. The good algorithm ought to support
SR in task service processing with rapid response-finishing
time.

The objective of this research is to design a simple concept
of optimal task allocation from SR to SP under consideration
by SM.

II. RELATED RESEARCH AND THEORY

A. Related Research
[1] First come first served [1] was a technique that each

task was allocated to one of SPs that was managed in queue of
service. This algorithm is a easiest ones but it may cause
serious to SP which are on very busy state and should delay
finish time of that task processing. This method is suitable for
SP that mostly available to service.

Ant colony [2] is an optimization technique that is applied
to task allocation algorithm. Application was split in to many
tasks which were considered to distribute to cloud of SP under
behavior migration of each SP. This algorithm was designed to
prevent work over loading occurring on SP. This technique is
very complex method and it was tended to consume plenty of
processing time so that it could cause bottle neck at SM.

Load balancing [3] is a most presented algorithm which the
algorithm try to study SP’s prior knowledge of their loading so
that SM should use these information to consider which SP is
optimized SP in provide processing for a suitable request task
of SR.

The mature techniques for good task allocation algorithms
are not yet finished announced. It still be in invention and
contribution by many researchers. Thus, this research is also
follow the same direction to [2] but reduce its complexity to be
a simple one. A simple mathematics technique and dynamic
programming are chosen to solve a task allocation problem.

B. CPU usage.

CPU usage in this research was defined that SP and SM
have identical CPU performance scale so that calculation of
SP’s CPU performance usage can include SR’s CPU
performance usage. In normally, SP’s CPU usage has its own
likely pattern in a period of time. This is a condition of this
research that SP’s CPU usage must be similar defined as a
specific equation. SR’s CPU usage pattern is also performed in
the same direction.

C. Lagrange transformation technique[4]

International Journal of Applied Computer Technology and Information Systems: Volume 3, No.1, April 2013 - September 2013

20

 Lagrange transformation is a technique that was used
to minimization or maximization a objective function
according to constraint functions. If is an objective function
is 1(,..., ;)nf x x � .The constraint function

is 1(,..., ;)ng x x c� � . While 1x is a random variable, c is a

constant and � is vector of parameters. The Lagrange

function is 1 1(,... ;) ((,..., ;))n nL f x x c g x x� � �� � � .
The solutions to the problem are to derived first order
condition; FOC of * *

1(,..., ;)nc g x x �� 0� and
* * * * *
1 1(,... ;) (,..., ;) 0n i nf x x g x x� � �� �

III. TASK ALLOCATION ALGORITHM DESIGN
Design algorithm of task allocation was begin on prepared

relate data, calculate of SP and SR information then make a
decision.

A. Definition of CPU Usage

In experiment on this research, CPU usage is categorized in
three status (Ready: R, Busy: B and Very Busy: VB).The status
is defined as shown in table I.

TABLE I. SP Status Definition

SP Status CPU-performance
RAM
Usage

Ready �10% �4 GB
Busy 10%<and�30% �12GB

Very busy 30%<and�80% �20GB

B. SP & SR- CPU usage pattern

For this experiment, CPU performance-usage of sample SP
and SR were captured for a period of time as shown in table II
and III. This data were curve fitting by mathematic equation ,
under the best value of R2, as shown in equation 1 and 2.

 20.097* 4.492* 18.497SP ST ST� � � �
2 0.911R � while (SP time) 50ST � (1)

20.032* 0.873* 6.312SR CT CT� � �
2 0.901R � while (SR time) 15CT � (2)

Table II. SP CPU usage data

0
10
20
30
40
50
60
70
80
90

0 20 40 60

Fig 1. Scatter plot of SP CPU usage

Table III. SP’s CPU usage data

Figure 2. Scatter plot of SR’s CPU usage

0

2

4

6

8

10

12

14

0 5 10 15 20

International Journal of Applied Computer Technology and Information Systems: Volume 3, No.1, April 2013 - September 2013

21

C. Total CPU usage

 When SR initiate request to SM at time t = n and if SM has
to perform calculation for decision making about 3 time unit
thus SP should be start it working on t = n + 3. SR has to give
more information about its desirable time. For example, if the
processing time in SP must be finished before m unit of time, t
= n + 3 + m, thus SP has to conduct processing for SR during
Ststart = n + 3 and Ststop = n + 3 + m. Each SP was assumed
that loading calculation must be considered on this time. The
start time of SP, for process SR’s task, is at St1(or Ststart) and
stop processing at St2(or Ststop). If we assume that each SP
has to be consumed its CPU performance in whole time (n+3
and n+3+m) thus for the group of SP, it should be some SP
which consume least CPU performance usage. This SP should
be a chosen to perform SR task.

-10
0

10
20

30
40

50
60

70
80

90

0 10 20 30 40 50 60

Fig 2. Scatter plot of SP (), SR(•) and

Total CPU usage().

 D. Practical example

 In figure 2, total CPU usage is calculated from integral
summation function of SR and SP during time n+3 to n+3+m.
The CPU performance usage during this time, not exceed than
95% (for example) CPU performance usage, is calculated as
95*((n+3+m)-(n+3)) or 95*m. If some SP has large area of idle
CPU usage, 95*m minus total CPU usage, then this SP is
suitable to be chosen for task allocation. This amount of idle
area may be called as loose CPU performance usage: LCU.
LCU could be defined as equation (3).

 (3)

or

 (4)

 After numerical of equation (4), the result as shown in
equation (5)

2

1

95* [0.065 3.619 24.81]
St St

St St

LCU m St St dSt
�

�

� � � � �� (5)

 While St is started at n+3 and fished at n+3+m. Ct is
belonging to St. The LCU value could be calculated by replace
constant “n” ,“m”(or St1= n+3 and St2=n+3+m).

E. Objective and constraint function

 SR’s task should be start at any time between n+3 to
n+3+m. If this task be started at a suitable time, it should give a

minimized LCU. That is the objective and constraint functions
are shown on equation (6), (7), (8) and (9).

 (6)

or

 (7)

Subject to:

1 23 3n Ct Ct n m� � 	 � � � (8)

 The Lagrange transformation of (6), (7) and (8) can be
present on equation (9).

1 2 2 2 1 1 2 1{{(95*) [[() ()] [() ()]]}m Eq atCt Eq atCt Eq atCt Eq atCt� � � � ��

1 1 2 1 2 3 2() () ()}n r Ct Ct s Ct Ct w n m� � �� � � � � � � � � � (9)

While r, s and w are filled constant value that use to adapt in
equation (5), (6) to be simple equation. After perform derive
equation(9), [

1 2 1 2 2

, , , , , , ,d d d d d d d d
dCt dCt d d d dr ds dw� � �

� � � � � � � �], then set

all results to value “0”. The value of Ct1, Ct2 are shown as
follows.

1Ct �

2Ct �

F. SM decision making

After LCU of each SP are calculated then SM choose to
allocate SR-task to one of SPs that has the largest LCU.

IV. SUMMARY AND SUGGESTION
 The designed simple task allocation algorithm in the

research is based on basic mathematics concept. The LCU was
calculated from the same start point on both SP and SR.

However, this task allocation algorithm is suitable in
ordinary working in most SP which value “m” is not too large
deviate from “n”. If it is not in this condition, the range of start
and stop time is large, then Ct should be start at any point of St.
Thus difference equation of SR-CPU performance usage
should be considered in order to point out which is the suitable
period of time for task allocation. At this point SP’s CPU
performance usage is surely less consumed.

REFERENCES
[1] Armstrong P., Cloud scheduler: a resource manager for distributed

compute clouds, University of Victoria, Canada, 2010.
[2] Ratan Mishra, Ant colony optimization: A solution of load balancing in

Cloud, International journal of Web& semantic technology vol.3 no 2.
April, 2012.

[3] Nidhi jain kansal, Existing load balancing techniques in cloud
computing: a systematic review, Journal of information systems and
communication, vol.3 issue 1, 2012.

[4] David Anderson, Markov chains, University of Wisconsin Madison,
2013.

International Journal of Applied Computer Technology and Information Systems: Volume 3, No.1, April 2013 - September 2013

22

