A Content-based Image Retrieval of Muay-Thai Folklores by Salient Region Matching
Abstract
บทคัดย่อ—บทความนี้นำเสนอการค้นคืน “ท่ารำมวยไทย (หรือแม่ไม้มวยไทย)” โดยใช้เทคนิคการเปรียบเทียบความเหมือนกันระหว่างเส้นขอบบริเวณของวัตถุ ซึ่งเป็นงานวิจัยฉบับแรกที่มีการบูรณาการระหว่างศาสตร์ “การจำแนกท่าทางของมนุษย์” กับ “แม่ไม้มวยไทย” โดยมีวัตถุประสงค์เพื่ออนุรักษ์ศิลปะและวัฒนธรรมไทย อย่างที่เราทราบกันดีว่า มวยไทยนั้นได้รับขนานนามว่าเป็นศิลปะการต่อสู้ที่ใช้ในการต่อสู้ได้จริงมากที่สุดในโลก ดังจะเห็นได้ว่ามีชาวต่างชาติจำนวนมากมาใช้ชีวิตในช่วงวันหยุดยาวเพื่อร่ำเรียนวิชามวยไทย จากจารึกจดหมายเหตุแห่งสยาม พบว่า แม่ไม้มวยไทยนั้นเริ่มมีการเผยแพร่ให้กับกองทัพและราษฎรของสมเด็จพระสุริเยนทราธิบดีแห่งอโยธยา เพื่อเป็นวิชาการต่อสู้ป้องกันตัวเองจากการโจมตีของศัตรูภายนอกราชอาณาจักร ซึ่งประกอบไปด้วย แม่ไม้มวยไทย 15 ท่ารำ ดังนี้ (1.) ท่าสลับฟันปลา (2.) ท่าปักษาแหวกรัง (3.) ท่านชวาซัดหอก (4.) ท่าอิเหนาแทงกฤช (5.) ท่ายกเขาพระสุเมรุ (6.) ท่าตาเถรค้ำฝัก (7.) ท่ามอญยันหลัก (8.) ท่าปักลูกทอย (9.) ท่าจระเข้ฟาดหาง (10.) ท่าหักงวงไอยรา (11.) ท่านาคาบิดหาง (12.) ท่าวิรุฬหกกลับ (13.) ท่าดับชวาลา (14.) ท่าขุนยักษ์จับลิง และ (15.) ท่าหักคอเอราวัณ ตามลำดับ
คำสำคัญ: การรู้จำท่ามวยไทย, การค้นคืนศิลปะการป้องกันตัว, คำอธิบายภาพกีฬาการต่อสู้, แม่ไม้มวยไทย, การจำแนกท่าทางของมนุษย์
Abstract—This paper introduces a novel “Muay-Thai folklore image retrieval” by salient region matching that is the first groundwork to combine the “human action classification” and “Muay-Thai folklores” together. The paper is proposed to support the “Thai arts and cultures conservation (known as Thai-ness)” As Muay-Thai is denominated as the “real-world practice of martial fighting” in the world. Importantly, many foreigners take Muay-Thai training courses during their long holidays. From the Siamese archives, the “original Muay-Thai folklores” was disseminated in the reign of king Suriyentharathibodhi during the age of Ayutthaya. Since the king needed his men and armies having the martial fighting skills to protect the domestic kingdom against the foreign enemies. And the traditional Muay-Thai folklores consisted of (1.) Sa Lub Fun Pla, (2.) Pak Sa Waek Rang, (3.) Java Sud Hok, (4.) Tang Krich, (5.) Yok Khao Phra Sumen, (6.) Ta Then Kum Fak, (7.) Morn Yan Lak,
(8.) Pak Look Toy, (9.) Jor Ra Kay Fad Harng, (10.) Hak Nguang Ayara, (11.) Na Ka Bid Harng, (12.) Wi Roon Hok Klub, (13.) Dub Chavala, (14.) Koon Yak Jub Ling and (15.) Huk Khor Erawan, respectively.
Keywords-Muay-Thai Recognition; Martial Arts Retrieval; Fighting Sports Annotation; Muay-Thai Folklores; Human Action Classification
Full Text:
PDFReferences
“9 Reasons Why Muay Thai Is The Perfect Martial Art,” [Online]. Available: https://evolve-mma.com/blog/9-reasons-muay-thai-perfect-martial-art/. [Accessed: 24 February 2018].
“Preserving The Classic Technique of Maemai Muay Thai,” [Online]. Available: http://fightland.vice.com/blog/preserving-the-classic-technique-of-maemai-muay-thai. [Accessed: 25 February 2018].
Department of Cultural Promotion, “Muay-Thai as the pride and heritage of Thai people from the ancestors,” [Online]. Available: http://www.culture.go.th/culture_th/mobile_detail.php?cid=11&nid=584. [Accessed: 25 February 2018]. (in Thai).
Thai Encyclopedia for juveniles, “The 15 Muay-Thai Folklores,” [Online]. Available: http://kanchanapisek.or.th/kp6/sub/book/
book.php?book=35&chap=3&page=t35-3-infodetail05.html. [Accessed: 26 February 2018]. (in Thai).
Thailandee, “Ceremony of World Wai Kru Muay Thai,” [Online]. Available: https://www.thailandee.com/en/events-thailand/
ceremony-of-world-wai-kru-muay-thai-62. [Accessed: 26 February 2018].
“9 Reasons You Need To Train Muay Thai in Thailand,” [Online]. Available: http://muay-thai-guy.com/train-muay-thai-in-thailand.html. [Accessed: 26 February 2018].
Bangkok.com, “10 Great Muay Thai Gyms in Bangkok,” [Online]. Available: http://www.bangkok.com/magazine/best-muay-thai-gyms.htm. [Accessed: 26 February 2018].
A. A. Olaode, G. Naghdy and C. A. Todd, "Unsupervised Image Classification by Probabilistic Latent Semantic Analysis for the Annotation of Images," 2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Wollongong, NSW, 2014, pp. 1-8.
P. Mookdarsanit, L. Soimart, M. Ketcham and N. Hnoohom, "Detecting Image Forgery Using XOR and Determinant of Pixels for Image Forensics," 2015 11th International Conference on Signal-Image Technology & Internet-Based Systems, Bangkok, 2015, pp. 613-616.
A. Ahar, A. Barri and P. Schelkens, "From Sparse Coding Significance to Perceptual Quality: A New Approach for Image Quality Assessment," in IEEE Transactions on Image Processing, vol. 27, no. 2, pp. 879-893, Feb. 2018.
L. Soimart and P. Pongcharoen, “Multi-row Machine Layout Design using Aritificial Bee Colony,” 2011 International Conference on Economics and Business Information, Bangkok, 2011.
L. Soimart and P. Mookdarsanit, “Gender Estimation of a Portrait: Asian Facial-significance Framework,” The 6th International Conference on Sciences and Social Sciences, Mahasarakham, 2016.
Y. Luo and Y. P. Guan, "Adaptive skin detection using face location and facial structure estimation," in IET Computer Vision, vol. 11, no. 7, pp. 550-559, 10 2017.
X. Qian et al., "Image Location Inference by Multisaliency Enhancement," in IEEE Transactions on Multimedia, vol. 19, no. 4, pp. 813-821, April 2017.
P. Mookdarsanit and M. Rattanasiriwongwut, “Location Estimation of a Photo: A geo-signature MapReduce Workflow,” in Engineering Journal, vol.21, no.3, pp.295-308, May 2017.
P. Mookdarsanit and M. Ketcham, “Image Location Estimation of Well-known Places from Multi-source based Information,” The 11th International Symposium on Natural Language Processing, Ayutthaya, 2016.
L. F. D'Haro, R. E. Banchs, C. K. Leong, L. G. M. Daven and N. T. Yuan, "Automatic labelling of touristic pictures using CNNs and metadata information," 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP), Singapore, 2017, pp. 292-296.
L. Soimart and P. Mookdarsanit, “Name with GPS Auto-tagging of Thai-tourist Attractions from An Image,” The 2017 Technology Innovation Management and Engineering Science International Conference, 2017.
P. Mookdarsanit and S. Rattanasiriwongwut, “GPS Determination of Thai-temple Arts from a Single Photo,” The 11th International Conference on on Applied Computer Technology and Information Systems, Bangkok, Thailand, 2017, pp. 42-47.
J. Lv, X. Shao, J. Xing, C. Cheng and X. Zhou, "A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 3691-3700.
P. Mookdarsanit and M. Rattanasiriwongwut, “MONTEAN Framework: A Magnificent Outstanding Native-Thai and Ecclesiastical Art Network,” in International Journal of Applied Computer Technology and Information Systems, vol.6, no.2, pp.17-22, 2017.
H. He, F. Kong and J. Tan, "DietCam: Multiview Food Recognition Using a Multikernel SVM," in IEEE Journal of Biomedical and Health Informatics, vol. 20, no. 3, pp. 848-855, May 2016.
L. Soimart and P. Mookdarsanit, “Ingredients estimation and recommendation of Thai-foods,” in SNRU Journal of Science and Technology, vol.9, no.2, pp.509-520, Jul. 2017.
G. Ciocca, P. Napoletano and R. Schettini, "Food Recognition: A New Dataset, Experiments, and Results," in IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 3, pp. 588-598, May 2017.
L. Soimart and M. Ketcham, “An efficient algorithm for earth surface interpretation from satellite imagery,” in Engineering Journal, vol.20, no.5, pp.215-228, Nov. 2016.
L. Soimart and M. Ketcham, “Hybrid of Pixel-based and Region-based Segmentation for Geology Exploration from Multi-spectral Remote Sensing,” The 11th International Symposium on Natural Language Processing, Ayutthaya, 2016.
L. Soimart and M. Ketcham, “The Segmentation of Satellite Image Using Transport Mean-shift Algorithm,” 13th International Conference on IT Applications and Management (ITAM-13), 2015, pp. 124-128.
Z. Zhao, H. Ma and S. You, "Single Image Action Recognition Using Semantic Body Part Actions," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 2017, pp. 3411-3419.
P. Mookdarsanit and L. Mookdarsanit, “An Automatic Image Tagging of Thai Dance’s Gestures,” Joint Conference on ACTIS & NCOBA, Ayutthaya, Thailand, January 2018, pp. 76-80.
Y. Lavinia, H. H. Vo and A. Verma, "Fusion Based Deep CNN for Improved Large-Scale Image Action Recognition," 2016 IEEE International Symposium on Multimedia (ISM), San Jose, CA, 2016, pp. 609-614.
B. A. Jasani, S. K. Lam, P. K. Meher and M. Wu, "Threshold-Guided Design and Optimization for Harris Corner Detector Architecture," in IEEE Transactions on Circuits and Systems for Video Technology, vol. PP, no. 99, pp. 1-1.
Q. Zhou, u. R. Shafiq, Y. Zhou, X. Wei, L. Wang and B. Zheng, "Face Recognition Using Dense SIFT Feature Alignment," in Chinese Journal of Electronics, vol. 25, no. 6, pp. 1034-1039, 11 2016.
Refbacks
- There are currently no refbacks.